## **Contents**

## Part I Instrumentation and Methods

| Scanning Probe Microscopy in Biological Research                 | 3  |
|------------------------------------------------------------------|----|
| Introduction                                                     | 3  |
| SPM for Visualization of the Surface of Biomaterials             | 4  |
| Advantages of AFM in Biological Studies                          |    |
| AFM of Biomolecules                                              |    |
| AFM of Isolated Intracellular and Extracellular Structures       |    |
| AFM of Tissue Sections                                           |    |
| AFM of Living Cells and Their Movement                           |    |
| Combination of AFM with Scanning Near-Field Optical              |    |
| Microscopy for Imaging Biomaterials                              | 12 |
| SPM for Measuring Physical Properties of Biomaterials            | 14 |
| Evaluation Methods of Viscoelasticity                            |    |
| Examples for Viscoelasticity Mapping Measurements                |    |
| Combination of Viscoelasticity Measurement with Other Techniques |    |
| SPM as a Manipulation Tool in Biology                            |    |
| Conclusion                                                       |    |
| References                                                       |    |
| Scanning Probes for the Life Sciences                            | 27 |
| Introduction                                                     | 27 |
| Microarray Technology                                            |    |
| Microcontact Printing                                            |    |
| Optical Lithography                                              |    |
| Protein Arrays                                                   |    |
| Nanoarray Technology                                             |    |
| The Push for Nanoscale Detection                                 |    |
| Probe-Based Patterning                                           |    |
| Alternative Patterning Methods                                   |    |
| Nanoscale Deposition Mechanisms                                  |    |



viii Contents

| AFM Parallelization                                                                                                                                                                                                                                                                                                                                                | 51                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| One-Dimensional Arrays                                                                                                                                                                                                                                                                                                                                             | 52                                                             |
| Two-Dimensional Arrays                                                                                                                                                                                                                                                                                                                                             |                                                                |
| Future Prospects for Nanoprobes                                                                                                                                                                                                                                                                                                                                    |                                                                |
| References                                                                                                                                                                                                                                                                                                                                                         |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                    |                                                                |
| New AFM Developments to Study Elasticity and Adhesion                                                                                                                                                                                                                                                                                                              |                                                                |
| at the Nanoscale                                                                                                                                                                                                                                                                                                                                                   | 63                                                             |
| Robert Szoszkiewicz, Elisa Riedo                                                                                                                                                                                                                                                                                                                                   |                                                                |
| Introduction                                                                                                                                                                                                                                                                                                                                                       | 64                                                             |
| Contact Mechanics Theories and Their Limitations                                                                                                                                                                                                                                                                                                                   | 65                                                             |
| Modulated Nanoindentation                                                                                                                                                                                                                                                                                                                                          | 67                                                             |
| Force-Indentation Curves                                                                                                                                                                                                                                                                                                                                           |                                                                |
| Elastic Moduli                                                                                                                                                                                                                                                                                                                                                     | 70                                                             |
| Ultrasonic Methods at Local Scales                                                                                                                                                                                                                                                                                                                                 |                                                                |
| Brief Description of Ultrasonic Methods                                                                                                                                                                                                                                                                                                                            | 72                                                             |
| Applications of Ultrasonic Techniques in Elasticity Mapping                                                                                                                                                                                                                                                                                                        | 75                                                             |
| UFM Measurements of Adhesion Hysteresis and Their Relations to                                                                                                                                                                                                                                                                                                     |                                                                |
| Friction at the Tip-Sample Contact                                                                                                                                                                                                                                                                                                                                 | 76                                                             |
| References                                                                                                                                                                                                                                                                                                                                                         | 78                                                             |
| Application of 51 M and Related 1 centified to the Mechanical                                                                                                                                                                                                                                                                                                      |                                                                |
| Application of SPM and Related Techniques to the Mechanical Properties of Biotool Materials                                                                                                                                                                                                                                                                        | 81                                                             |
| Properties of Biotool Materials                                                                                                                                                                                                                                                                                                                                    |                                                                |
| Properties of Biotool Materials                                                                                                                                                                                                                                                                                                                                    | 82                                                             |
| Properties of Biotool Materials                                                                                                                                                                                                                                                                                                                                    | 82<br>84                                                       |
| Properties of Biotool Materials                                                                                                                                                                                                                                                                                                                                    | 82<br>84<br>84                                                 |
| Properties of Biotool Materials  Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger  Introduction                                                                                                                                                                                                                                                            | 82<br>84<br>84                                                 |
| Properties of Biotool Materials  Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger  Introduction  Typical Biotool Materials  Chemistry  Structures  Mechanical Properties                                                                                                                                                                                   | 82<br>84<br>84<br>86                                           |
| Properties of Biotool Materials  Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger  Introduction                                                                                                                                                                                                                                                            | 82<br>84<br>86<br>88<br>89                                     |
| Properties of Biotool Materials  Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger  Introduction  Typical Biotool Materials  Chemistry  Structures  Mechanical Properties  Experimental Methods and Setups  SPM and Indentation                                                                                                                             | 82<br>84<br>86<br>88<br>89                                     |
| Properties of Biotool Materials  Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger  Introduction  Typical Biotool Materials  Chemistry  Structures  Mechanical Properties  Experimental Methods and Setups  SPM and Indentation  Scratch and Wear Tests                                                                                                     | 82<br>84<br>86<br>88<br>89<br>89                               |
| Properties of Biotool Materials  Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger  Introduction.  Typical Biotool Materials  Chemistry  Structures  Mechanical Properties  Experimental Methods and Setups  SPM and Indentation  Scratch and Wear Tests  Dynamic Modes                                                                                     | 82<br>84<br>86<br>88<br>89<br>91<br>92                         |
| Properties of Biotool Materials  Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger  Introduction.  Typical Biotool Materials  Chemistry.  Structures  Mechanical Properties  Experimental Methods and Setups.  SPM and Indentation  Scratch and Wear Tests  Dynamic Modes.  Fracture Toughness Tests                                                        | 82<br>84<br>86<br>88<br>89<br>91<br>92<br>93                   |
| Properties of Biotool Materials  Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger  Introduction.  Typical Biotool Materials  Chemistry  Structures  Mechanical Properties  Experimental Methods and Setups  SPM and Indentation  Scratch and Wear Tests  Dynamic Modes  Fracture Toughness Tests  Samples                                                  | 82<br>84<br>86<br>89<br>89<br>91<br>92<br>93                   |
| Properties of Biotool Materials  Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger  Introduction.  Typical Biotool Materials  Chemistry  Structures  Mechanical Properties  Experimental Methods and Setups  SPM and Indentation  Scratch and Wear Tests  Dynamic Modes  Fracture Toughness Tests  Samples  Choice                                          | 82<br>84<br>86<br>89<br>91<br>92<br>93<br>94                   |
| Properties of Biotool Materials  Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger  Introduction.  Typical Biotool Materials  Chemistry.  Structures  Mechanical Properties  Experimental Methods and Setups  SPM and Indentation  Scratch and Wear Tests  Dynamic Modes  Fracture Toughness Tests  Samples  Choice  Storage                                | 82<br>84<br>86<br>88<br>99<br>91<br>92<br>94<br>94             |
| Properties of Biotool Materials  Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger  Introduction.  Typical Biotool Materials  Chemistry  Structures  Mechanical Properties  Experimental Methods and Setups  SPM and Indentation  Scratch and Wear Tests  Dynamic Modes  Fracture Toughness Tests  Samples  Choice                                          | 82<br>84<br>86<br>89<br>91<br>92<br>94<br>94<br>95             |
| Properties of Biotool Materials  Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger  Introduction.  Typical Biotool Materials  Chemistry  Structures  Mechanical Properties  Experimental Methods and Setups  SPM and Indentation  Scratch and Wear Tests  Dynamic Modes  Fracture Toughness Tests  Samples  Choice  Storage  Preparation                    | 82<br>84<br>86<br>89<br>91<br>92<br>94<br>94<br>94<br>95       |
| Properties of Biotool Materials Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger Introduction Typical Biotool Materials Chemistry Structures Mechanical Properties  Experimental Methods and Setups SPM and Indentation Scratch and Wear Tests Dynamic Modes Fracture Toughness Tests  Samples Choice Storage Preparation Experimental Conditions Moisture | 82<br>84<br>86<br>89<br>91<br>92<br>94<br>94<br>95<br>96<br>97 |
| Properties of Biotool Materials Thomas Schöberl, Ingomar L. Jäger, Helga C. Lichtenegger Introduction Typical Biotool Materials Chemistry Structures Mechanical Properties  Experimental Methods and Setups SPM and Indentation Scratch and Wear Tests Dynamic Modes Fracture Toughness Tests  Samples Choice Storage Preparation Experimental Conditions          | 82 84 86 89 91 92 94 95 97 97                                  |

| Results                                                                          | 99  |
|----------------------------------------------------------------------------------|-----|
| Sources of Error                                                                 | 99  |
| Interpretation                                                                   | 104 |
| Examples from the Literature                                                     | 105 |
| References                                                                       | 108 |
|                                                                                  |     |
| Direct Force Measurements of Receptor-Ligand Interactions                        |     |
| on Living Cells                                                                  | 115 |
| Robert H. Eibl                                                                   |     |
| Introduction                                                                     | 116 |
| Procedure                                                                        | 122 |
| Principle of AFM Force Spectroscopy                                              | 123 |
| Cell-Cell Interactions                                                           | 123 |
| Cell-Substrate Measurements                                                      | 126 |
| Specificity and Blocking Antibodies                                              | 128 |
| Activation by SDF-1                                                              | 131 |
| Protocols                                                                        | 134 |
| Cantilever Functionalization                                                     | 134 |
| AFM Measurement on Living Cells                                                  | 136 |
| Inhibition with Blocking Antibodies, Peptidomimetic Inhibitors                   |     |
| or EDTA                                                                          | 139 |
| Activation with Mg <sup>2+</sup> , Mn <sup>2+</sup> Ions, Activating Antibodies, |     |
| Phorbolester or Chemokines                                                       | 140 |
| AFM Measurement—Cell Free                                                        |     |
| Conclusion and Future Developments                                               |     |
| References                                                                       | 143 |
|                                                                                  |     |
| Self-Sensing Cantilever Sensor for Bioscience                                    | 147 |
| Hayato Sone, Sumio Hosaka                                                        |     |
| Introduction                                                                     |     |
| Basics of the Cantilever Mass Sensor                                             |     |
| Finite Element Method Simulation of the Cantilever Vibration                     | 151 |
| Detection of Cantilever Deflection                                               | 154 |
| Using a Position Sensor                                                          | 154 |
| Using a Piezoresistive Sensor                                                    | 155 |
| Self-Sensing Systems                                                             | 160 |
| Vibration Systems                                                                |     |
| Vibration-Frequency Detection Systems                                            |     |
| Applications                                                                     |     |
| Water Molecule Detection in Air                                                  |     |
| Antigen and Antibody Detection in Water                                          |     |
| Prospective Applications                                                         |     |
| References                                                                       | 172 |

x Contents

| Microfabricated Cantilever Array Sensors for (Bio-)Chemical Detection | 175        |
|-----------------------------------------------------------------------|------------|
| Hans Peter Lang, Martin Hegner, Christoph Gerber                      | •••1/      |
| Introduction                                                          | 175        |
| Sensors                                                               | 175<br>175 |
| Cantilevers                                                           | 176        |
| Cantilever Operating Modes                                            | 170        |
|                                                                       |            |
| Cantilever Arrays  Experimental Setup                                 | 104<br>100 |
| Measurement Chamber                                                   |            |
| Cantilever Functionalization.                                         |            |
| Measurements                                                          |            |
| Artificial Nose for Detection of Perfume Essences                     | 193<br>106 |
|                                                                       |            |
| Label-Free DNA Hybridization Detection                                |            |
| Applications and Outlook                                              |            |
| Nanomechanics and Microfluidics as a Tool for Unraveling              | 202        |
| Blood Clotting Disease                                                | 207        |
| D.M. Steppich, S. Thalhammer, A. Wixforth, M.F. Schneider             |            |
| Introduction                                                          | 207        |
| Topography                                                            |            |
| Little Story of Blood Clotting                                        |            |
| High-Resolution Imaging                                               |            |
| Lab-on-a-Chip                                                         |            |
| Nanomechanical Diagnostics                                            |            |
| Mimicking Blood Flow Conditions on a Surface Acoustic                 |            |
| Wave-Driven Biochip                                                   | 222        |
| The Lab on a Chip – AFM – Hybrid                                      | 224        |
| Experimental Setup.                                                   |            |
| Bundle Relaxation                                                     |            |
| Stream Line Manipulation and Flow Sensoring                           | 230        |
| Summary and Outlook                                                   |            |
| References                                                            |            |
| 101010100                                                             | 433        |
| Quantitative Nanomechanical Measurements in Biology                   | 239        |
| Malgorzata Lekka, Andrzej J. Kulik                                    |            |
| Stiffness of Biological Samples                                       |            |
| Cell Structure                                                        |            |
| Determination of Young's Modulus                                      |            |
| Brief Overview of the Application of AFM to Studies of Living Cells.  |            |
| Summary                                                               |            |
| Friction Force Microscopy                                             | 258        |
| Friction and Chemical Force Micrograms                                |            |

Contents

| Applications of FFM/CFM                                            | 263 |
|--------------------------------------------------------------------|-----|
| Summary                                                            | 270 |
| References                                                         | 271 |
| Applications of Scanning Near-Field Optical Microscopy             |     |
| in Life Science                                                    | 275 |
| Pietro Giuseppe Gucciardi                                          |     |
| Introduction                                                       | 276 |
| Experimental Techniques in Near-Field Optical Microscopy           |     |
| Principles of Near-Field Optical Microscopy                        |     |
| Fluorescence Near-Field Optical Microscopy                         |     |
| Near-Field Optical Microscopy in Liquid                            | 281 |
| Tip-Enhanced Near-Field Optical Microscopy                         | 283 |
| Applications of Near-Field Optical Microscopy in Life Science      | 284 |
| Infrared Imaging of Tobacco Mosaic Virus with Nanoscale            |     |
| Resolution                                                         | 284 |
| Co-Localization of Malarial and Host Skeletal Proteins in Infected |     |
| Erythrocytes by Dual-Color Near-Field Fluorescence Microscopy      | 285 |
| Co-Localization of α-Sarcoglycan and β1D-Integrin in               |     |
| Human Muscle Cells by Near-Field Fluorescence Microscopy           | 287 |
| Single Molecule Near-Field Fluorescence Microscopy of              |     |
| Dendritic Cells                                                    | 288 |
| Chemical Information of Bacterial Surfaces and Detection of        |     |
| DNA Nucleobases by Tip-Enhanced Raman Spectroscopy                 | 290 |
| Conclusions                                                        | 291 |
| References                                                         | 292 |
|                                                                    |     |
| Scanning Ion Conductance Microscopy                                | 295 |
| Tilman E. Schäffer, Boris Anczykowski, Harald Fuchs                |     |
| Introduction                                                       | 295 |
| Fundamental Principles                                             | 296 |
| Basic Setup                                                        | 296 |
| Nanopipettes                                                       |     |
| Electrodes                                                         | 300 |
| Ion Currents Through Nanopipettes                                  | 301 |
| Background Theory                                                  | 301 |
| Simple Analytical Model                                            | 301 |
| Finite Element Modeling                                            | 303 |
| Experimental Current-Distance Curves                               |     |
| Imaging with Ion Current Feedback                                  |     |
| Advanced Techniques                                                |     |
| Modulation Methods                                                 |     |
| Applications in Bioscience                                         | 310 |

xii Contents

| Combination with Other Scanning Techniques                 | 311 |
|------------------------------------------------------------|-----|
| Combination with Atomic Force Microscopy                   |     |
| Application in Material Science                            |     |
| Combination with Shear Force Microscopy                    |     |
| Application in Bioscience                                  |     |
| Outlook                                                    |     |
| References                                                 | 320 |
|                                                            |     |
| Scanning Probe Lithography for Chemical, Biological and    |     |
| Engineering Applications                                   | 325 |
| Joseph M. Kinsella, Albena Ivanisevic                      |     |
| Introduction                                               | 326 |
| Modeling of the DPN Process                                |     |
| Patterning of Biological and Biologically Active Molecules |     |
| DNA Patterning                                             | 332 |
| Protein Patterning                                         | 334 |
| Peptide Patterning                                         |     |
| Patterning of Templates for Biological Bottom-Up Assembly  | 339 |
| Chemical Patterning.                                       |     |
| Thiols                                                     |     |
| ω-Substituted Thiols                                       | 342 |
| Silanes and Silazanes                                      |     |
| Deposition of Solid Organic Inks                           |     |
| Polymers                                                   |     |
| Polyelectrolytes                                           |     |
| Dendrimers                                                 |     |
| Deposition of Supramolecular Materials                     |     |
| Deposition of Metals                                       | 349 |
| Deposition of Solid-State Materials                        |     |
| Deposition of Magnetic Materials                           |     |
| Engineering Applications of DPN                            |     |
| Future Challenges and Applications                         | 354 |
| Conclusions                                                | 355 |
| References                                                 | 355 |
|                                                            |     |
| Scanning Probe Microscopy: From Living Cells to the        |     |
| Subatomic Range                                            | 359 |
| Ille C. Gebeshuber, Manfred Drack, Friedrich Aumayr,       |     |
| Hannspeter Winter, Friedrich Franek                        |     |
| Introduction                                               | 359 |
| Cells In Vivo as Exemplified by Diatoms                    |     |
| Introduction to Diatoms                                    |     |
| SPM of Diatoms                                             |     |
| Interaction of Large Organic Molecules                     |     |

Contents xiii

| Nanodefects on Atomically Flat Surfaces                                                                                                                                |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Bombardment of Single Crystal Insulators with Multicharged Ions                                                                                                        |            |
| Subatomic Features                                                                                                                                                     | 377        |
| Atom Orbitals                                                                                                                                                          |            |
| Single Electron Spin Detection with AFM and STM                                                                                                                        |            |
| Conclusions and Outlook                                                                                                                                                | 382        |
| References                                                                                                                                                             | 383        |
| Part II                                                                                                                                                                |            |
| AFM of Biomolecules                                                                                                                                                    |            |
| Atomic Force Microscopy of DNA Structure and Interactions                                                                                                              | 389        |
|                                                                                                                                                                        | 290        |
| Introduction: The Single-Molecule, Bottom-Up Approach                                                                                                                  |            |
|                                                                                                                                                                        |            |
| The Atomic Force Microscope                                                                                                                                            |            |
| Binding of DNA to Support Surfaces  Properties of Support Surfaces for Biological AFM                                                                                  | 399<br>200 |
| DNA Binding to Surfaces                                                                                                                                                |            |
| DNA Transport to Surfaces                                                                                                                                              |            |
| AFM of DNA Systems                                                                                                                                                     |            |
| Static Imaging versus Dynamic Studies                                                                                                                                  |            |
| The Race for Reproducible Imaging of Static DNA                                                                                                                        |            |
| Applications of Tapping-Mode AFM to DNA Systems                                                                                                                        |            |
| Outlook                                                                                                                                                                |            |
| References                                                                                                                                                             |            |
| Nanostructuration and Nanoimaging of Biomolecules for Biosensors<br>Claude Martelet, Nicole Jaffrezic-Renault, Yanxia Hou,<br>Abdelhamid Errachid, François Bessueille |            |
| Introduction and Definition of Biosensors                                                                                                                              | 427        |
| Definition                                                                                                                                                             |            |
| Biosensor Components                                                                                                                                                   | 427        |
| Immobilization of the Bioreceptor                                                                                                                                      | 428        |
| Langmuir-Blodgett and Self-Assembled Monolayers as Immobilization                                                                                                      |            |
| Techniques                                                                                                                                                             |            |
| Langmuir-Blodgett Technique                                                                                                                                            |            |
| Self-Assembled Monolayers                                                                                                                                              |            |
| Characterization of SAMs and LB Films                                                                                                                                  |            |
| Prospects and Conclusion                                                                                                                                               |            |
| References                                                                                                                                                             | 457        |

xiv Contents

## Part III AFM of Biological Membranes, Cells and Tissue

| on Live Cells Using AFM                                          | 463 |
|------------------------------------------------------------------|-----|
| David Alsteens, Vincent Dupres, Etienne Dague, Claire Verbelen,  | 403 |
| Guillaume André, Grégory Francius, Yves F. Dufrêne               |     |
|                                                                  | 162 |
| Introduction                                                     |     |
| Chemical Force Microscopy                                        |     |
| Methods                                                          |     |
| Probing Hydrophobic Forces                                       |     |
| Chemical Force Microscopy of Live Cells                          |     |
| Molecular Recognition Imaging                                    |     |
| Spatially Resolved Force Spectroscopy                            |     |
| Immunogold Imaging                                               |     |
| Conclusions                                                      |     |
| References                                                       | 477 |
| Single Melecule Studies on Cally and Marchagues Heing the Atomic |     |
| Single-Molecule Studies on Cells and Membranes Using the Atomic  | 470 |
| Force Microscope                                                 | 4/9 |
| Ferry Kienberger, Lilia A. Chtcheglova, Andreas Ebner,           |     |
| Theeraporn Puntheeranurak, Hermann J. Gruber, Peter Hinterdorfer |     |
| Introduction                                                     |     |
| Principles of Atomic Force Microscopy                            |     |
| Imaging of Membrane-Protein Complexes                            |     |
| Membranes of Photosynthetic Bacteria and Bacterial S-Layers      |     |
| Nuclear Pore Complexes                                           |     |
| Cell Membranes with Attached Viral Particles                     |     |
| Single-Molecule Recognition on Cells and Membranes               |     |
| Principles of Recognition Force Measurements                     |     |
| Force-Spectroscopy Measurements on Living Cells                  |     |
| Unfolding and Refolding of Single-Membrane Proteins              |     |
| Simultaneous Topography and Recognition Imaging on Cells (TREC)  |     |
| Concluding Remarks                                               |     |
| References                                                       | 501 |
|                                                                  |     |
| Atomic Force Microscopy: Interaction Forces Measured in          |     |
| Phospholipid Monolayers, Bilayers, and Cell Membranes            | 505 |
| Zoya Leonenko, David Cramb, Matthias Amrein, Eric Finot          |     |
| Introduction                                                     | 505 |
| Phase Transitions of Lipid Bilayers in Water                     |     |
| Morphology Change During Lamellar Phase Transition               |     |
| Change in Forces During Phase Transition                         |     |
| Force Measurements on Pulmonary Surfactant Monolayers in Air     |     |
| Adhesion Measurements: Monolayer Stiffness and Function          |     |

| Repulsive Forces: The Interaction of Charged Airborne Particles                                           |            |
|-----------------------------------------------------------------------------------------------------------|------------|
| with Surfactant                                                                                           | . 520      |
| Interaction Forces Measured on Lung Epithelial Cells in Buffer                                            | . 522      |
| Cell Culture/Force Measurement Setup                                                                      | . 523      |
| Mechanical Properties                                                                                     | . 525      |
| Conclusions                                                                                               | . 528      |
| References                                                                                                | . 529      |
| Atomic Force Microscopy Studies of the Mechanical Properties                                              |            |
| of Living Cells                                                                                           | 533        |
| Félix Rico, Ewa P. Wojcikiewicz, Vincent T. Moy                                                           |            |
| Introduction                                                                                              | . 533      |
| Principle of Operation                                                                                    | . 534      |
| AFM Imaging                                                                                               | . 536      |
| Force Measurements                                                                                        | . 536      |
| Cell Viscoelasticity                                                                                      | . 537      |
| AFM Tip Geometries                                                                                        | . 538      |
| Elasticity: Young's Modulus                                                                               | . 538      |
| Viscoelasticity: Complex Shear Modulus                                                                    | . 540      |
| Cell Adhesion                                                                                             | . 542      |
| Concluding Remarks and Future Directions                                                                  | . 548      |
| References                                                                                                |            |
| Application of Atomic Force Microscopy to the Study of Expressed  Molecules in or on a Single Living Cell | 555        |
| Hideo Arakawa, Toshiya Osada, Atsushi Ikai                                                                |            |
| Introduction                                                                                              | 556        |
| Methods of Manipulation To Study Molecules in or on a Living Cell                                         |            |
| Using an AFM                                                                                              |            |
| AFM Tip Preparation To Manipulate Receptors on a Cell Surface                                             |            |
| Analysis of Molecular Interactions Where Multiple Bonds Formed                                            | 559        |
| Measurement of Single-Molecule Interaction Strength on                                                    |            |
| Soft Materials                                                                                            | 561        |
| Observation of the Distribution of Specific Receptors on a Living                                         |            |
| Cell Surface                                                                                              |            |
| Distribution of Fibronectin Receptors on a Living Fibroblast Cell                                         |            |
| Distribution of Vitronectin Receptors on a Living Osteoblast Cell                                         | 565        |
| Quantification of the Number of Prostaglandin Receptors                                                   |            |
| on a Chinese Hamster Ovary Cell Surface                                                                   |            |
| Further Application of the AFM to the Study of Single-Cell Biology                                        | 567        |
| Manipulation of Expressed mRNAs in a Living Cell Using an AFM                                             | 570        |
|                                                                                                           | 570        |
| Manipulation of Membrane Receptors on a Living Cell Surface Using an AFM                                  | 570<br>570 |

| Towards a Nanoscale View of Microbial Surfaces Using the      | 501        |
|---------------------------------------------------------------|------------|
| Atomic Force Microscope                                       | 563        |
| David Alsteens, Etienne Dague, Yves F. Dufrêne                |            |
|                                                               |            |
| Introduction                                                  |            |
| Imaging                                                       | 584        |
| Sample Preparation                                            | 584        |
| Visualizing Membrane Proteins at Subnanometer Resolution      |            |
| Live-Cell Imaging                                             | 585        |
| Force Spectroscopy                                            |            |
| Customized Tips                                               |            |
| Probing Nanoscale Elasticity and Surface Properties           |            |
| Stretching Cell Surface Polysaccharides and Proteins          | 591        |
| Nanoscale Mapping and Functional Analysis of Molecular        |            |
| Recognition Sites                                             |            |
| Conclusions                                                   |            |
| References                                                    | 596        |
|                                                               |            |
| Cellular Physiology of Epithelium and Endothelium             | 599        |
| Christoph Riethmüller, Hans Oberleithner                      |            |
| Introduction                                                  | 599        |
| Epithelium                                                    |            |
| Transport Through a Septum                                    |            |
| In the Kidney                                                 |            |
| Endothelium                                                   | 608        |
| Paracellular Gaps                                             |            |
| Cellular Drinking                                             |            |
| Wound Healing                                                 |            |
| Transmigration of Leukocytes                                  |            |
| Technical Remarks                                             |            |
| Summary                                                       |            |
| References                                                    |            |
|                                                               |            |
| Nanotribological Characterization of Human Hair and Skin      |            |
| Using Atomic Force Microscopy (AFM)                           | 621        |
| Bharat Bhushan, Carmen LaTorre                                |            |
| Introduction                                                  | (21        |
| Human Hair, Skin, and Hair Care Products                      |            |
|                                                               |            |
| Human Hair and Skin                                           | 023        |
| Hair Care: Cleaning and Conditioning Treatments, and Damaging | (22        |
| Processes                                                     |            |
| Experimental Techniques.                                      |            |
| Experimental Procedure                                        | 639<br>642 |
| DAG ARREAKIR ARIDINES                                         | D/1 4      |

| Results and Discussion                                              | 645 |
|---------------------------------------------------------------------|-----|
| Surface Roughness, Friction, and Adhesion for Various               |     |
| Ethnicities of Hair                                                 | 645 |
| Surface Roughness, Friction, and Adhesion for Virgin and            |     |
| Chemically Damaged Caucasian Hair (with and without                 |     |
| Commercial Conditioner Treatment                                    | 656 |
| Surface Roughness, Friction, and Adhesion for Hair Treated          |     |
| with Various Combinations of Conditioner Ingredients                | 664 |
| Investigation of Directionality Dependence and Scale Effects on     |     |
| Friction and Adhesion of Hair                                       |     |
| Surface Roughness and Friction of Skin                              |     |
| Closure                                                             | 684 |
| References                                                          |     |
| Appendix                                                            | 689 |
|                                                                     |     |
| Evaluating Tribological Properties of Materials for                 | (01 |
| Total Joint Replacements Using Scanning Probe Microscopy            | 691 |
| Sriram Sundararajan, Kanaga Karuppiah Kanaga Subramanian            |     |
| Introduction                                                        |     |
| Total Joint Replacements                                            |     |
| Social and Economic Significance                                    |     |
| Problems Associated with Total Joint Replacements                   |     |
| Tribology                                                           |     |
| Materials                                                           |     |
| Lubrication in Joints—the Synovial Fluid                            | 695 |
| Conventional Tribological Testing of Material Pairs for Total Joint |     |
| Replacements                                                        |     |
| Wear Tests                                                          |     |
| Friction Tests                                                      | 696 |
| Scanning Probe Microscopy as a Tool to Study Tribology of Total     |     |
| Joint Replacements                                                  |     |
| Nanotribology of Ultrahigh Molecular Weight Polyethylene            |     |
| Fretting Wear of Cobalt-Chromium Alloy                              |     |
| Summary and Future Outlook                                          |     |
| References                                                          | 710 |
| A                                                                   | =10 |
| Atomic Force Microscopy in Nanomedicine                             | 713 |
| Dessy Nikova, Tobias Lange, Hans Oberleithner, Hermann Schillers,   |     |
| Andreas Ebner, Peter Hinterdorfer                                   |     |
| AFM in Biological Sciences                                          |     |
| Plasma Membrane Preparation for AFM Imaging                         |     |
| Introduction                                                        |     |
| Plasma Membrane Preparation                                         |     |
| Atomic Force Microscopy                                             | 719 |

xviii Contents

| and the state of t | 710                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Molecular Volume Measurements of Membrane Proteins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
| AFM Imaging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 719                      |
| AFM Imaging of CFTR in Oocyte Membranes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 723                      |
| Does the CFTR Form Functional Assemblies?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| Two CFTRs are Better Than One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
| Single Antibody-CFTR Recognition Imaging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |
| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 728                      |
| Tethering of Antibodies to AFM Tips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
| AFM Imaging and Recognition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 729                      |
| A Single Antibody Sees a Single CFTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 729                      |
| Single Cell Elasticity: Probing for Diseases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 731                      |
| Force-Mapping AFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
| Can One Protein Change Cell Elasticity?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| Part IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 741                      |
| Functional Bio(-inspired) Surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 741                      |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity  Michael Nosonovsky, Bharat Bhushan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 741                      |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity  Michael Nosonovsky, Bharat Bhushan  Introduction  Contact Angle Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 741<br>744               |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity  Michael Nosonovsky, Bharat Bhushan  Introduction  Contact Angle Analysis  Homogeneous Solid-Liquid Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 741<br>744<br>745        |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 741<br>744<br>745<br>748 |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 741<br>744<br>745<br>748 |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Functional Bio(-inspired) Surfaces  Lotus Effect: Roughness-Induced Superhydrophobicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |

| Gecko Feet: Natural Attachment Systems for Smart            |     |
|-------------------------------------------------------------|-----|
| Adhesion—Mechanism, Modeling, and Development of            |     |
| Bio-Inspired Materials                                      | 781 |
| Bharat Bhushan, Robert A. Sayer                             |     |
| Introduction                                                | 781 |
| Tokay Gecko                                                 |     |
| Construction of Tokay Gecko                                 |     |
| Other Attachment Systems                                    |     |
| Adaptation to Surface Roughness                             | 787 |
| Peeling                                                     | 788 |
| Self-Cleaning                                               | 790 |
| Attachment Mechanisms                                       | 792 |
| Van der Waals Forces                                        | 792 |
| Capillary Forces                                            | 793 |
| Experimental Adhesion Test Techniques and Data              | 794 |
| Adhesion Under Ambient Conditions                           | 795 |
| Effects of Temperature                                      | 797 |
| Effects of Humidity                                         |     |
| Effects of Hydrophobicity                                   |     |
| Adhesion Modeling                                           | 799 |
| Spring Model                                                | 801 |
| Single Spring Contact Analysis                              | 801 |
| The Multilevel Hierarchical Spring Analysis                 | 803 |
| Adhesion Results for the Gecko Attachment System Contacting |     |
| a Rough Surface                                             | 806 |
| Capillarity Effects                                         | 810 |
| Adhesion Results that Account for Capillarity Effects       | 811 |
| Modeling of Biomimetic Fibrillar Structures                 |     |
| Fiber Model                                                 |     |
| Single Fiber Contact Analysis                               |     |
| Constraints                                                 |     |
| Numerical Simulation                                        |     |
| Results and Discussion                                      |     |
| Fabrication of Biomimetric Gecko Skin                       |     |
| Single-Level Hierarchical Structures                        |     |
| Multilevel Hierarchical Structures                          |     |
| Closure                                                     |     |
| Appendix                                                    |     |
| References.                                                 |     |