

Contents

Preface — v

1 Introduction — 1

2 Scalar second-order PDEs — 5

- 2.1 Spherical mean value relations for the Laplace equation — 5
- 2.1.1 Direct spherical mean value relation — 5
- 2.1.2 Converse mean value theorem — 11
- 2.1.3 Integral equation equivalent to the Dirichlet problem — 12
- 2.1.4 Poisson–Jensen formula — 14
- 2.2 The diffusion and Helmholtz equations — 15
- 2.2.1 Diffusion equation — 15
- 2.2.2 Helmholtz equation — 17
- 2.3 Generalized second-order elliptic equations — 18
- 2.4 Parabolic equations — 20
- 2.4.1 Heat equation — 20
- 2.4.2 Parabolic equations with variable coefficients — 25
- 2.4.3 Expansion of the parabolic means — 27
- 2.5 Wave equation — 29

3 High-order elliptic equations — 32

- 3.1 Balayage operator — 32
- 3.2 Biharmonic equation — 34
- 3.2.1 Direct spherical mean value relation — 34
- 3.2.2 Generalized Poisson formula — 35
- 3.2.3 Rigid fixing of the boundary — 39
- 3.2.4 Nonhomogeneous biharmonic equation — 42
- 3.3 Fourth-order equation governing the bending of a plate — 44
- 3.4 Metaharmonic equations — 48
- 3.4.1 Polyharmonic equation — 48
- 3.4.2 General case — 50

4 Triangular systems of elliptic equations — 55

- 4.1 One-component diffusion system — 55
- 4.2 Two-component diffusion system — 56
- 4.3 Coupled biharmonic–harmonic equation — 58

5	Systems of elasticity theory — 60
5.1	Lamé equation — 60
5.1.1	Direct spherical mean value theorem — 60
5.1.2	Converse spherical mean value theorem — 64
5.2	Pseudovibration elastic equation — 66
5.3	Thermoelastic equation — 73
6	The generalized Poisson formula for the Lamé equation — 74
6.1	Plane elasticity — 74
6.1.1	Poisson formula for the displacements in rectangular coordinates — 74
6.1.2	Poisson formula for displacements in polar coordinates — 83
6.2	Generalized spatial Poisson formula for the Lamé equation — 86
6.3	An alternative derivation of the Poisson formula — 98
7	Spherical means for the stress and strain tensors — 102
7.1	Spherical means for the displacements — 102
7.2	Mean value relations for the stress and strain tensors — 105
7.2.1	Mean value relation for the strain components — 105
7.2.2	Mean value relation for the stress components — 110
7.3	Mean value relations for the stress components — 111
8	Random Walk on Spheres method — 120
8.1	Spherical mean as a mathematical expectation — 120
8.2	Iterations of the spherical mean operator — 121
8.3	The Random Walk on Spheres algorithm — 122
8.3.1	The Random Walk on Spheres process for the Dirichlet problem — 122
8.3.2	Inhomogeneous case — 130
8.4	Biharmonic equation — 132
8.5	Isotropic elastostatics governed by the Lamé equation — 134
8.5.1	Naive generalization — 134
8.5.2	Modification of the algorithm — 135
8.5.3	Nonisotropic Random Walk on Spheres — 137
8.5.4	Branching process — 139
8.5.5	Analytical continuation with respect to the spectral parameter — 141
8.6	Alternative Schwarz procedure — 144

9	Random Walk on Fixed Spheres for Laplace and Lamé equations — 148
9.1	Introduction — 148
9.2	Laplace equation — 150
9.2.1	Integral formulation of the Dirichlet problem — 150
9.2.2	Approximation by linear algebraic equations — 157
9.2.3	Set of overlapping disks — 158
9.2.4	Estimation of the spectral radius — 163
9.3	Isotropic elastostatics — 165
9.4	Iteration methods — 168
9.4.1	Stochastic iterative procedure with optimal random parameters — 168
9.4.2	SOR method — 173
9.5	Discrete Random Walk algorithms — 176
9.5.1	Discrete Random Walk based on the iteration method — 176
9.5.2	Discrete Random Walk method based on SOR — 177
9.5.3	Sampling from discrete distribution — 178
9.5.4	Variance of stochastic methods — 179
9.6	Numerical simulations — 181
9.6.1	Laplace equation — 181
9.6.2	Lamé equation — 182
9.7	Conclusion and discussion — 184
10	Stochastic spectral projection method for solving PDEs — 186
10.1	Introduction — 186
10.2	Laplace equation — 187
10.2.1	Two overlapping disks — 187
10.2.2	Neumann boundary conditions — 192
10.2.3	Overlapping of a half-plane with a set of disks — 194
10.3	Extension to the isotropic elasticity: Lamé equation — 197
10.3.1	Elastic disk — 197
10.3.2	Elastic half-plane — 199
10.4	Extension to 3D problems — 200
10.4.1	A sphere — 200
10.4.2	Elastic half-space — 201
10.5	Stochastic projection method for large linear systems — 203
11	Stochastic boundary collocation and spectral methods — 205
11.1	Introduction — 205
11.2	Surface and volume potentials — 206
11.3	Random Walk on Boundary Algorithm — 208

11.4	General scheme of the method of fundamental solutions (MFS) — 210
11.4.1	Kupradze–Aleksidze's method based on first-kind integral equation — 212
11.4.2	MFS for Laplace and Helmholtz equations — 213
11.4.3	Biharmonic equation — 214
11.5	MFS with separable Poisson kernel — 214
11.5.1	Dirichlet problem for the Laplace equation — 215
11.5.2	Evaluation of the Green function and solving inhomogeneous problems — 217
11.5.3	Evaluation of derivatives on the boundary and construction of the Poisson integral formulae — 219
11.6	Hydrodynamics friction and the capacitance of a chain of spheres — 220
11.7	Lamé equation: plane elasticity problem — 225
11.8	SVD and randomized versions — 229
11.8.1	SVD background — 229
11.8.2	Randomized SVD algorithm — 230
11.8.3	Using SVD for the linear least squares solution — 232
11.9	Numerical experiments — 233
12	Solution of 2D elasticity problems with random loads — 241
12.1	Introduction — 241
12.2	Lamé equation with nonzero body forces — 244
12.3	Random loads — 249
12.4	Random Walk methods and Double Randomization — 251
12.4.1	General description — 251
12.4.2	Green-tensor integral representation for the correlations — 252
12.5	Simulation results — 254
12.5.1	Testing the simulation procedure for random loads — 254
12.5.2	Testing the Random Walk algorithm for nonzero body forces — 254
12.5.3	Calculation of correlations for the displacement vector — 255
13	Boundary value problems with random boundary conditions — 260
13.1	Introduction — 260
13.1.1	Spectral representations — 261
13.1.2	Karhunen–Loève expansion — 263
13.2	Stochastic boundary value problems for the 2D Laplace equation — 265
13.2.1	Dirichlet problem for a 2D disk: white noise excitations — 267
13.2.2	General homogeneous boundary excitations — 273
13.2.3	Neumann boundary conditions — 274
13.2.4	Upper half-plane — 276

13.3	3D Laplace equation —	279
13.4	Biharmonic equation —	282
13.5	Lamé equation: plane elasticity problem —	285
13.5.1	White noise excitations —	285
13.5.2	General case of homogeneous excitations —	293
13.6	Response of an elastic 3D half-space to random excitations —	297
13.6.1	Introduction —	297
13.6.2	System of Lamé equations governing an elastic half-space with no tangential surface forces —	298
13.6.3	Stochastic boundary value problem: correlation tensor —	299
13.6.4	Spectral representations for partially homogeneous random fields —	301
13.6.5	Displacement correlations for the white noise excitations —	303
13.6.6	Homogeneous excitations —	305
13.6.7	Conclusions and discussion —	308
13.6.8	Appendix A: the Poisson formula —	309
13.6.9	Appendix B: some 2D Fourier transform formulae —	311
13.6.10	Appendix C: some 2D integrals —	312
13.6.11	Appendix D: some further Fourier transform formulae —	314
Bibliography —		317
Index —		327