Contents

I	Intr	oductory issues	1
	1.1	Ion-Selective Electrodes: What are These?	1
	1.2	Brief Survey of the ISE Applications	5
	1.3	ISEs Classification by the Membrane Type:	
		Glass, Crystalline, Polymeric Membrane ISEs	6
	1.4	Brief History of ISEs	7
	Refe	erences	9
2	The	Basics of the ISEs	11
	2.1	The Membrane Model	11
	2.2	Boundary (Interfacial) Potential, the Nernst Equation	12
		2.2.1 The Physical Nature of the Boundary Potential	12
		2.2.2 Formal Thermodynamical Description	
		of Boundary Potential	15
	2.3	Diffusion Potential	17
		2.3.1 The Physical Nature of the Diffusion Potential	17
		2.3.2 The Mathematical Description	
		of the Diffusion Potential	19
		2.3.3 The Segmented Model of the Overall	
		Membrane Potential	21
	2.4	Galvanic Cells without Liquid Junction and with Liquid	
		Junction, Advantages and Disadvantages Thereof	22
		2.4.1 Cells without Liquid Junction	22
		2.4.2 Cells with Liquid Junction	25
	2.5	The Mean Electrolyte Activity and the Single-Ion Activity.	
		The Elements of the Debye-Hückel Theory	29
	Refe	erences	31
3	Ion-	-Selective Electrode Characteristics	33
	3.1	Ion-Selective Electrode Working Range and Response Slope	33
	3.2	Potentiometric Selectivity Coefficient	35

viii Contents

	3.3	Meası	rements of the Selectivity Coefficients	38
		3.3.1	Separate Solutions Method	38
		3.3.2	Fixed Interference Method	39
		3.3.3	Matched Potentials Method	42
		3.3.4	Unbiased Selectivity and the Bakker Protocol	42
	3.4	Respo	nse Time	45
	3.5	Stabil	ity and Piece-to-Piece Reproducibility	
		of the	ISE Response	46
	Refe	rences		48
4	Iono	phore-	Based ISEs	51
	4.1		xchangers and Charged Ionophores	51
	4.2		al Ionophores	55
	4.3		ners and Plasticizers in ISE Membranes	58
		4.3.1	Poly(vinylchloride) Plasticized Membranes	58
		4.3.2	Non-PVC Polymeric Membranes, ISEs	
			with Ion-Exchanger Sites and Ionophores	
			Covalently Bound to Polymer Backbone	63
	4.4	The T	Theory of the Ionophore-Based Membranes	0.
			onse and Selectivity	65
		4.4.1	Response and Selectivity of ISEs with Membranes	0.
			Containing Ion Exchangers and Charged Ionophores	65
		4.4.2	The Hofmeister Series	69
		4.4.3	Selectivity of the ISEs Based on Neutral Ionophores	71
		4.4.4	Co-Ion Interference with the Response of ISEs Based	′ •
		7,7,7	on Neutral Ionophores	73
	4.5	Gener	alized Theories of Ionophore-Based ISE Membranes	75
	4.5	4.5.1	The Sandblom-Eisenman-Walker Theory	75
		4.5.2	Phase-Boundary Potential Approaches, Ionic	1-
		7.5.2	Additives, Selectivity Optimization	77
		4.5.3	Multispecies Approximation	78
	4.6		es of the Species Interactions in Ionophore-Based	, (
	7.0		oranes	82
		4.6.1	Complexation of Ions by Neutral Ionophores	82
		4.6.2	Quantification of Ion-Site Association	02
		4.0.2	in Membranes	85
	4.7	Potent	ciometric Sensing of Nonionic Species	87
	4.8		es of the Interfacial Kinetics at the	07
	4.0		orane/Solution Boundary	89
	Refe			91
_	~ .			0.5
5			rodes	97
	5.1		ials of the Glass Electrode Membranes	97
	5.2		heories of the pH and Metal Ion Glass Electrode nse and Selectivity	101
		Kespo	nse and selectivity	101

Contents

		5.2.1	The Nikolsky "Simple" Theory	101
		5.2.2	The Eisenman Theory	104
		5.2.3	The Nikolsky-Shultz Generalized Theory	105
		5.2.4	The Baucke Theory, Comparison	
			with the Nikolsky Theory	106
	5.3	Glass	Electrodes for RedOx Sensing	110
	Refe	erences		111
_		a		117
6			ve Electrodes with Crystalline Membranes	113 113
	6.1		ials of Crystalline Electrode Membranes	113
	6.2		de Electrode Based on Lanthanum	114
			de Monocrystal	115
	6.3		tical Characteristics of ISEs with	
		•	rystalline Membranes	116
		6.3.1	Electrode Response and Detection Limit	116
		6.3.2	Crystalline Electrodes Responding to Heavy	
			Metal Cations	119
		6.3.3	Selectivity of ISEs with Crystalline Membranes	120
		6.3.4	Diffusion Layer Model by Lewenstam	
			and Hulanicki	121
	6.4		ogenide Glass ISEs	122
	Refe	erences		123
7	Mod	lern Tr	rends in the ISEs Theory and Applications	125
	7.1		Fime and Space Modeling of ISEs	125
	7.2		n Trace Analysis	126
	7.3		f ISEs Under Nonzero Current Conditions	129
	7.4		sensor Arrays, Electronic Tongue	131
	Refe			132
8	ISE	Constr	ructions	135
	8.1	Conve	entional ISEs with Internal Filling Solution	135
	8.2	Solid-	Contact ISEs	138
		8.2.1	Why Solid Contact?	138
		8.2.2	Solid-Contact ISEs with Glass and Crystalline	
			Membranes	139
		8.2.3	Ionophore-Based Solid-Contact ISEs Without	
			Transducer Layer	140
		8.2.4	Solid-Contact ISEs with Electron-Ion-Exchanger	
			Resins in the Transducer Layer	141
		8.2.5	Solid-Contact ISEs with Conducting Polymers	
			in the Transducer Layer	142
		8.2.6	Influence of Water Uptake on the Stability	
			of Solid-Contact ISEs	143

	8.3	Combination Electrodes	145
	8.4	Micro-ISEs for Cellular Studies	145
	8.5	Flow-Through ISE Cells	146
	Refe	erences	147
)	The	Basics of the Routine Analysis with ISEs	149
	9.1	Reference Electrodes	149
	9.2	Instrumentation for the Measurements with ISEs	150
	9.3	Direct Potentiometry with ISEs, Calibrators,	
		and Buffer Solutions	152
	9.4	Standard Addition Methods, Potentiometric	
		Titration with ISEs	154
	Refe	erences	157
'n	dev		150