

Contents

1	General Introduction	1
1.1	Laser Surface Treatment and Laser Shock Processing	1
1.2	Recent Development of Laser Shock Processing on Alloys and Metallic Materials	3
1.3	Typical Applications of Laser Shock Processing	6
1.4	Scope of the Book	9
	References	11
2	Surface Integrity of LY2 Al Alloy Subjected to Laser Shock Processing	15
2.1	Introduction	15
2.2	Laser Systems for Laser Shock Processing	16
2.3	Generation of Laser Shock Wave	17
2.4	Laser Shock Processing Equipment in this Book	19
2.5	Nano-Hardness, Micro-Hardness and Residual Stress	21
2.5.1	Experimental Material and Parameters	23
2.5.2	Measurement of Elastic Modulus and Hardness	24
2.5.3	Effects of LSP on Nano-Hardness and Elastic Modulus	26
2.5.4	Enhancement Mechanism of LSP on Hardness and Elastic Modulus	29
2.6	Surface Roughness and Surface Profile	30
2.6.1	Sample Preparation and Surface Topography Measurements	31
2.6.2	Surface Topography	32
2.6.3	Residual Stress	36
2.6.4	Micro-Hardness	36

2.7	Simulation and Validation of the Residual Stresses Using Laser Elliptical Spot	37
2.7.1	Sample Preparation and Measurements of Residual Stress	38
2.7.2	Numerical Simulation Procedures	39
2.7.3	The Simulation and Verification of Surface Residual Stress Distribution	40
2.7.4	The Simulation and Verification of Residual Stress Distribution in Depth Direction.	45
2.8	Summary	47
	References	48
3	Tensile Properties and Fatigue Lives of LY2 Al Alloy Subjected to Laser Shock Processing	53
3.1	Introduction	53
3.2	Tensile Properties Under Different Stain-Rates	53
3.2.1	Experimental Material and Parameters.	54
3.2.2	Tensile Properties of Strain Rate on LY2 Al Alloy During LSP	56
3.3	Fractural Morphologies Under Different Stain-Rates	61
3.3.1	Experimental Material and Parameters.	61
3.3.2	Effects of Strain Rate on the Fractural Morphologies of LY2 Al Alloy by Laser Shock Processing	62
3.4	Fatigue Life of LY2 Al Alloy by Laser Shock Processing Under Different Treatment Parameters	65
3.4.1	Experimental Material and Parameters.	65
3.4.2	Residual Stress Distribution Near the Edge of the Blade	67
3.4.3	Micro-Hardness Distribution Near the Edge of the Blade	69
3.4.4	Effect of LSP Processing Parameters on the Fracture Morphology	70
3.4.5	Effect of LSP Processing Parameters on the Fatigue Performance	74
3.5	Influence Mechanisms	76
3.5.1	Effect of LSP with Different Processing Parameters on the Residual Stress Distribution Along the Depth Direction.	76
3.5.2	Effect Mechanism of LSP with Different Processing Parameters on the Fatigue Property of LY2 Al Alloy	77
3.6	Summary	79
	References	82

4 Grain Refinement of LY2 Al Alloys Induced by Multiple Laser Shock Processing Impacts	85
4.1 Introduction	85
4.2 Micro-Structural Characterization	86
4.3 Residual Stress Distribution of the Hardening Layer	87
4.4 Plastic Deformation and Microstructural Feature	89
4.4.1 SEM Observations	90
4.4.2 OM Observations	90
4.4.3 TEM Observations	93
4.5 Micro-Structural Strengthening Mechanism	95
4.5.1 Enhancement Mechanism of Multiple LSP Impacts	95
4.5.2 Schematic Illustration of Grain Refinement Induced by Multiple LSP Impacts	96
4.6 Summary	99
References	99
5 Visual Inspection and Control Methods of Laser Sock Processing Effectiveness	103
5.1 Introduction	103
5.2 Experiment Details	104
5.2.1 Selection of Laser Parameters	104
5.2.2 Samples and Treatments	104
5.3 Surface Quality and Fatigue Life	105
5.3.1 Grade A Surface Quality and Fatigue Life	105
5.3.2 Grade B Surface Quality and Fatigue Life	105
5.3.3 Grade C Surface Quality and Fatigue Life	107
5.3.4 Grade D Surface Quality and Fatigue Life	108
5.4 Analysis and Discussion	109
5.4.1 Fatigue Life	109
5.4.2 Surface Qualities	110
5.4.3 How to Obtain Grade A Surface Quality	110
5.5 Summary	111
References	111
6 Mechanical Properties of AISI 304 SS and its Welded Joint Subjected to Laser Shock Processing	113
6.1 Introduction	113
6.2 Measurement and Characteristics of Mechanical Properties and Micro-Structures	115
6.2.1 Experimental Material	115
6.2.2 Laser Welding Parameters	116
6.2.3 LSP Parameters	117
6.2.4 Measurements of Nano-Hardness, Elastic Modulus and Residual Stress	117

6.2.5	Measurements of Tensile Properties	118
6.2.6	Micro-Structural Observations	118
6.3	Nano-Hardness, Elastic Modulus and Residual Stress of AISI 304 SS	119
6.3.1	Effects of LSP on Nano-Hardness, Elastic Modulus and Residual Stress	119
6.3.2	Results of XRD Analysis	122
6.3.3	Effects of LSP on Micro-Structure in the Shocked Region	123
6.3.4	Enhancement Mechanism of LSP on Mechanical Properties of AISI 304 SS	124
6.4	Mechanical Properties and Fracture Morphology of Laser Welded Joint	126
6.4.1	Mechanical Properties of Laser Welded Joint	126
6.4.2	Fracture Morphology of Laser Welded Joint	129
6.5	Summary	133
	References	133
7	Stress Corrosion Cracking Resistance of AISI 304 SS Subjected to Laser Shock Processing	137
7.1	Introduction	137
7.2	Experimental Procedures	138
7.2.1	Sample Preparation	138
7.2.2	Experimental Parameters	139
7.2.3	Measurement of Residual Stress and Micro-Structural Observations	141
7.3	Results and Discussion	141
7.3.1	High-Temperature SCC Resistance	141
7.3.2	Residual Stress Distributions of Different U-Bend Samples	142
7.3.3	OM Morphologies of the Cross-Section and TEM Observations of the Top Surface	145
7.3.4	Improvement Mechanism of Massive LSP Impacts on SCC	148
7.4	Summary	150
	References	151
8	Grain Refinement of AISI 304 SS Induced by Multiple Laser Shock Processing Impacts	153
8.1	Introduction	153
8.2	Experimental Procedures	155
8.2.1	Principle and Experimental Procedure of LSP	155
8.2.2	Experimental Material and Processing Parameters	155
8.2.3	Micro-Structural Observations	156

8.3	Grain Size Variation Along Depth Direction	156
8.4	Micro-Structural Evolvement Along Depth Direction	157
8.5	TEM Observation of the Top Surface	160
8.6	Micro-Structural Evolution Process of the Top Surface	161
8.7	Micro-Structural Evolution Along Depth Direction	163
8.8	Summary	165
	References	165
9	Electrochemical Corrosion Resistance of AISI 304 SS Weldment Treated by Laser Shock Processing	169
9.1	Introduction	169
9.2	Experimental Procedures	170
9.2.1	Experimental Material and Sample Preparation	170
9.2.2	Experimental Procedure of Laser Welding and LSP	170
9.2.3	Cavitation Erosion Testing and Residual Stress Measurements	171
9.2.4	Morphology Observation and Surface Roughness Measurements	172
9.2.5	Electrochemical Testing and Surface Morphology Observation	172
9.3	Results and Discussion	174
9.3.1	Residual Stress Depth Profile of Weldments Without and with LSP Impacts	174
9.3.2	Morphology Observation of Cross Sections of Weldments Without and with LSP Impacts After Cavitation Erosion	175
9.3.3	Comparisons Between Surface Roughness of Weldments Without and with LSP Impacts After Cavitation Erosion	177
9.3.4	Analysis of Potentiodynamic Polarization Curves for Laser Weldments Without and with LSP Impacts After Cavitation Erosion	178
9.3.5	OM Micrographs on the Surface in the WZ and HAZ of Laser Weldments Without and with LSP Impacts After Cavitation Erosion in 3.5 wt % NaCl Solution	180
9.4	Summary	183
	References	184
	About the Authors	189
	Index	191