Contents

Intro	duc	tion		1
R	efe	rences .		5
Chap			obal ABCs for Second Order Elliptic Equations	
_	.1		or Problem of Second Order Elliptic Equations	9
1	.2		ABCs for the Exterior Problem of 2-D	
		Poisson	n Equation	. 13
		1.2.1	Steklov-Poincaré Mapping for the Exterior Problem	
			of Laplace Equation	
		1.2.2	The Reduced Boundary Value Problem on Ω_i	. 17
		1.2.3	Finite Element Approximation of the Reduced	
			Boundary Value Problem (1.2.30)~(1.2.32)	. 21
1	.3		ABCs for the Exterior Problems of 3-D	
		Poisso	n Equation	. 26
		1.3.1	Exact and Approximate ABCs on the Spherical	
			Artificial Boundary Γ_R	. 26
		1.3.2	Equivalent and Approximate Boundary Value Problems	
			on the Bounded Computational Domain Ω_i	. 30
		1.3.3	Finite Element Approximation of the Variational	
			Problem (1.3.30)	. 34
1	.4	Exteri	or Problem of the Modified Helmholtz Equation	37
		1.4.1	Global Boundary Condition of the Exterior Problem	
			for the 2-D Modified Helmholtz Equation	37
		1.4.2	The Reduced Boundary Value Problem on the	
			Computational Domain Q_i	39
		1.4.3	Finite Element Approximation of the Reduced	
			Boundary Value Problem	45
		1.4.4	Global Boundary Condition of the Exterior Problem	
			for the 3-D Modified Helmholtz Equation	47
1	5	Globa	l ABCs for the Exterior Problems of the	
		Helmh	oltz Equation	49
		1.5.1	Dirichlet to Sommerfeld Mapping of the Exterior	
			Problem of the 2-D Helmholtz Equation	49
		1.5.2	Dirichlet to Sommerfeld Mapping of the Exterior	
			Problem of the 3-D Helmholtz Equation	55
				iii
				111

	Refe	rences.		58
Րե	apter	2 Cla	shal ARCs for the Navier System and Stellag System	61
UΠ	apter 2.1		System and Stokes System System and Stokes System	
	$\frac{2.1}{2.2}$		xterior Problem of the 2-D Navier System	
	2.2	2.2.1	The Global Boundary Condition on the	04
		2.2.1	Artificial Boundary Γ_R	65
		2.2.2	The Reduced Problem on the Bounded Domain	
		2.2.2	The Finite Element Approximation for the Reduced	(1
		2.2.3	Problem (2.2.59)	77
	2.3	Errtonia	or Problem of the 2-D Stokes System	
	2.3	2.3.1	Highly Accurate Approximate Artificial	13
		2.3.1	Boundary Condition	80
		0 2 0	•	60
		2.3.2	Finite Element Approximation on the Computational	21
	n 4	Veeter	Domain Q_i for the Reduced Problem	
	2.4		Fields on the Spherical Surface	
	2.5		ABCs for the Exterior Problem of 3-D Navier System	
	•	2.5.1	Highly Accurate Approximate ABCs	90
		2.5.2	Finite Element Approximation of the Variational	100
	D . C		Problem on the Bounded Computational Domain \mathcal{Q}_i	
	Refe	rences .		111
Ch.	apter	3 Glo	obal ABCs for Heat and Schrödinger Equations	115
	3.1		Equations on Unbounded Domains	
	3.2		eat Equations on Unbounded Domains	
	J	3.2.1	Exact Boundary Conditions on the Artificial	
		0.2.1	Boundary Σ_0	117
		3.2.2	Finite Difference Approximation for the Reduced	
		0.2.2	Problem (3.2.7)~(3.2.10)	119
		3.2.3	Stability Analysis of Scheme (3.2.29)~(3.2.33)	
	3.3		Boundary Conditions for Exterior Problems of	120
	0.0		eat Equations	131
		3.3.1	Exact and Approximate Conditions on the	101
		0.0.1	Artificial Boundary \mathcal{L}_R	139
		3.3.2	Finite Difference Approximation of the Reduced	102
		0.0.2	Problem (3.3.37)~(3.3.40)	138
	3.4	Clobal	Boundary Conditions for Exterior Problems of	100
	0.4		eat Equations	140
		3.4.1	Exact and Approximate Conditions on the	140
		O. T. T	Artificial Boundary \mathcal{L}_R	14∩
		3.4.2	Stability Analysis for the Reduced Initial Boundary	10
		2 -	Value Problem	147

	0 4 0		
	3.4.3	The Finite Element Approximation for the Reduced	
	_	Initial Boundary Value Problem (3.4.38)~(3.4.41)	
3.5		dinger Equation on Unbounded Domains	
3.6	1-D S	chrödinger Equation on Unbounded Domains	. 152
	3.6.1	The Reduced Initial Value Problem and its Finite	
		Difference Approximation	. 153
	3.6.2	Stability and Convergence Analysis of Scheme	
		(3.6.19)~(3.6.22)	. 158
3.7	The G	Global Boundary Condition for the Exterior Problem	
	of the	2-D Linear Schrödinger Equation	. 166
	3.7.1	Exact and Approximate Boundary Conditions	
		on the Artificial Boundary Σ_R	. 167
	3.7.2	Stability Analysis of the Reduced Approximate Initial	
		Boundary Value Problem	. 172
3.8	The G	Slobal Boundary Condition for the Exterior Problem	
0.0		3-D Linear Schrödinger Equation	175
	3.8.1		
	0.0.1	on the Artificial Boundary Σ_R	176
	3.8.2	Stability Analysis of the Reduced Approximate Initial	. 110
	5.0.2	Boundary Value Problem	192
Det	0000000	Boundary value Froblem	
Ren	erences.		. 101
Chapte:	n 4 A T	3Cs for Wave Equation, Klein-Gordon Equation,	
		KdV Equations	180
4.1		Vave Equation	
4.1	4.1.1	Transparent Boundary Conditions on the	109
	4.1.1		100
4.9	0 D W	Artificial Boundaries Σ_1 and Σ_0	
4.2		Vave Equation	
	4.2.1	Absorbing Boundary Conditions	193
	4.2.2	The Initial Boundary Value Problem on the	
		Bounded Computational Domain D_i	
4.3		/ave Equation	203
	4.3.1	0 0	
		Artificial Boundary Σ_R	204
	4.3.2	The Equivalent and Approximate Initial Boundary Value	
		Problem on the Bounded Computational Domain D_i	
4.4	1-D K	lein-Gordon Equation	209
	4.4.1	Absorbing Boundary Conditions on the Artificial	
		Boundary Σ_1, Σ_0	210
	4.4.2	The Initial Boundary Value Problem on the Bounded	
		Computational Domain D_i	212
4.5	2- and	3-D Klein-Gordon Equations	214

		4.5.1	Absorbing Boundary Conditions on the Artificial	
			Boundary Σ_R (2-D case)	215
		4.5.2	Absorbing Boundary Conditions on the Artificial	
			Boundary Σ_R (3-D case)	
		4.5.3	The Initial Boundary Value Problem on the Bounded	
			Computational Domain D_i	223
	4.6	Linear	KdV Equation	
		4.6.1	Absorbing Boundary Condition on the Artificial	
			Boundaries Σ_a and Σ_b	225
		4.6.2	The Equivalent Initial Boundary Value Problem on	
			the Bounded Computational Domain	227
	4.7	Appen	dix: Three Integration Formulas	
	Refe			
Ch	apter	5 Loc	cal Artificial Boundary Conditions	233
	5.1		Boundary Conditions for Exterior Problems of	
			O Poisson Equation	234
		5.1.1	Local Boundary Condition on the Artificial	
			Bboundary Γ_R	234
		5.1.2	Finite Element Approximation Using the Local	
			Boundary Condition and its Error Estimate	236
	5.2	Local	Boundary Conditions for the 3-D Poisson Equation	
		5.2.1	The Local Boundary Condition on the Artificial	
			Boundary Γ_R for Problem (I)	242
		5.2.2	Local Boundary Conditions on the Artificial	
			Boundary Γ_R for Problem (II)	250
	5.3	Local	ABCs for Wave Equations on Unbounded Domains	
	Refe			
Ch	apter	6 Dis	screte Artificial Boundary Conditions	259
	6.1		ary Condition on a Polygon Boundary for the 2-D	
		Poisson	n Equation—The Method of Lines	260
		6.1.1	Discrete Boundary Conditions on Polygonal	
			Boundaries	260
		6.1.2	Numerical Approximation of the Exterior Problem	
			(6.1.1)~(6.1.3)	268
	6.2	2-D V	iscous Incompressible Flow in a Channel—Infinite	
		Differe	nce Method	270
		6.2.1	2-D Viscous Incompressible Flow in a Channel	270
		6.2.2	Discrete ABCs	272
	6.3	Numer	rical Simulation of Infinite Elastic Foundation—Infinite	
		Elemen	nt Method	278

	6.3.1	The Steklov-Poincarè on an Artificial Boundary of	
		Line Segments	279
	6.3.2	Numerical Approximation for the Bilinear	
		Form $B(u, v)$	281
	6.3.3	A Direct Method for Solving the Infinite System	
		of Algebraic Equations (6.3.25)	284
	6.3.4	A Fast Iteration Method for Computing the	
		Combined Stiffness Matrix K_z	289
6.4		ete Absorbing Boundary Condition for the 1-D	
	Klein-	Gordon Equation— Z transform method	292
	6.4.1	Z Transform	292
	6.4.2	Discrete Absorbing ABC	294
	6.4.3	Finite Difference Approximation for the 1-D	
		Klein-Gordon Equation on the Bounded Domain	296
Refe	rences		297
Chapter	7 Im	plicit Artificial Boundary Conditions	299
7.1	Implie	eit Boundary Condition for the Exterior Problem of	
	the 2-1	D Poisson Equation	300
	7.1.1	The Single and Double Layer Potential, and Their	
		Derivative for the 2-D Laplace Equation	300
	7.1.2	The Derivation of the Implicit ABC for the Exterior	
		Problem of the 2-D Poisson Equation	
	7.1.3	The Finite Element Approximation and Error Estimate	
		for the Variational Problem (7.1.37)	309
7.2	Implic	cit Boundary Condition for the Exterior Problem of	
	the 3-1	D Poisson Equation	310
7.3	ABC:	for the Exterior Problem of the Helmholtz Equation	316
	7.3.1	The Normal Derivative on Γ_A for the Double Layer	
		Potential of the Helmholtz Equation	318
7.4	Implic	tit ABCs for the Exterior Problems of the	
	Navier	: System	321
•	7.4.1	Fundamental Solution, Stress Operator, Single and	
		Double Layer Potentials	
	7.4.2	New Forms of $T(\partial_x, n_x)v_{II}(x)$ on $\Gamma_A(n=2)$	
	7.4.3	New Forms of $T(\partial_x, n_x)v_{II}(x)$ on $\Gamma_A(n=3)$	
	7.4.4	Implicit ABC for the Exterior Problem	
7.5		eit ABCs for the Sound Wave Equation	336
	7.5.1	The Kirchhoff Formula for the 3-D Sound	
		Wave Equation	
Refe	rences		338

Cł	ıapter	8 No	onlinear Artificial Boundary Conditions	341
	8.1	The B	Burgers Equation	342
		8.1.1	Nonlinear ABCs for the Burgers Equation	343
		8.1.2	The Equivalent Initial Boundary Value Problem on	
			the Bounded Computational Domain D_i	346
	8.2	The K	Kardar-Parisi-Zhang Equation	348
		8.2.1	Nonlinear ABC for the K-P-Z Equation $(D = 1)$	349
		8.2.2	Nonlinear ABC for the K-P-Z Equation $(D = 2)$	
		8.2.3	Nonlinear ABC for the K-P-Z Equation $(D = 3)$	353
	8.3	The C	Cubic Nonlinear Schrödinger Equation	354
		8.3.1	Nonlinear Boundary Conditions on the Artificial	
			Boundaries Σ_0 and Σ_{-1}	355
		8.3.2	The Equivalent Initial Boundary Value Problem on	
			the Bounded Domain $[-1, 0] \times [0, T]$	356
	8.4	Opera	ator Splitting Method for Constructing Approximate	
		Nonlir	near ABCs	358
		8.4.1	The Local Absorbing ABC for the Linear	
			Schrödinger Equation	359
		8.4.2	Finite Difference Approximation on the Bounded	
			Computational Domain	
	Refe	rences		362
Cl	napter	_	oplications to Problems with Singularity	
	9.1		Modified Helmholtz Equation with a Singularity	
		9.1.1	ABC Near Singular Points	
		9.1.2	An Iteration Method Based on the ABC	
	9.2		nterface Problem with a Singularity	373
		9.2.1	A Discrete Boundary Condition on the Artificial	
			Boundary Γ_R	
		9.2.2	Finite Element Approximation	
	9.3	The L	inear Elastic Problem with a Singularity	380
		9.3.1	Discrete Boundary Condition on the Artificial	
			Boundary Γ_R	
		9.3.2	An Iteration Method Based on the ABC	
	9.4	The S	Stokes Equations with a Singularity	393
		9.4.1	The Discrete Boundary Condition on the	
			Artificial Boundary Γ_R	
			Singular Finite Element Approximation	
	Refe	rences		406
Bi	bliogr	aphy		409