Contents

Preface -- v

Ha	bi	bΑ	mı	mari	

Differential	electromagnetic imaging —— 1
1	Introduction —— 1
2	Basic theory of electromagnetic waves — 3
2.1	The Helmholtz equation — 3
2.2	The Maxwell equations — 3
2.3	Fundamental solutions and radiation conditions — 4
2.4	Transmission and boundary conditions — 5
2.5	Dirichlet and Neumann functions and the Hodge decomposition — 6
2.6	Trace theorems and first Green identity — 7
2.7	Lippman-Schwinger representation formulas — 8
2.8	The Helmholtz-Kirchhoff theorems — 9
2.9	Limiting models — 10
2.10	The Maxwell equations with axis invariance — 11
2.11	The Maxwell equations versus the Helmholtz equation —— 12
3	Electric and magnetic polarization tensors — 12
4	small-volume expansions — 13
4.1	The full Maxwell equations — 13
4.2	The eddy currents model —— 17
4.3	The Helmholtz equation — 18
4.4	The conductivity equation — 18
4.5	Asymptotic formulas in the time domain — 18
5	Imaging in the frequency domain — 19
5.1	MUSIC-type imaging at a single frequency — 20
5.2	Backpropagation type imaging at a single frequency — 22
5.3	Imaging with a broad range of frequencies — 23
6	Imaging in the time domain — 24
6.1	Time-domain imaging with full view measurements — 24
6.2	Time-domain imaging in a cavity with limited-view data — 25
6.3	Time-domain imaging in dissipative media — 28
7	Numerical examples of MUSIC reconstructions for the full Maxwell
	equations — 33
8	Shape representations — 38
8.1	High-order polarization tensors — 38
8.2	Frequency dependent high-order polarization tensors — 41
9	Far-field imaging versus near-field imaging — 45
10	Open problems — 47

Xavier Claey	s, Ralf Hiptmair and Carlos Jerez-Hanckes
Multitrace b	oundary integral equations — 51
1	Introduction — 51
1.1	Geometry — 54
1.2	Transmission problems — 54
2	Boundary integral operators — 57
2.1	Trace spaces and operators — 58
2.2	Potentials — 61
2.3	Calderón projectors — 62
3	Classical single-trace integral equations — 64
3.1	Skeleton trace spaces — 65
3.2	A first-kind boundary integral equation — 69
3.3	Boundary element Galerkin discretization — 72
4	Preconditioning — 75
4.1	Operator products — 76
4.2	Calderón identities — 77
4.3	Operator preconditioning — 79
4.4	Stable duality pairing for boundary elements — 80
4.5	The challenge — 81
5	Global multitrace formulation — 82
5.1	Separated subdomains — 82
5.2	The gap idea — 85
5.3	Properties of global MTF — 86
5.4	Galerkin discretization — 87
6	Local multitrace formulation — 88
6.1	Partial transmission conditions — 89
6.2	Local MTF: variational formulation —— 91
6.3	Local MTF: Stability — 93
6.4	Boundary element Galerkin discretization — 95
	schner and Guanghui Hu
Direct and I	nverse Elastic Scattering Problems for Diffraction Gratings —— 101
1	Introduction — 101
2	Mathematical formulation of direct and inverse scattering
	problems — 103
3	Solvability results for direct scattering problems: variational
	method — 107
3.1	An equivalent variational formulation and its Fredholm property — 107
3.2	Uniqueness and existence for direct scattering problems — 109
3.3	Uniqueness and existence for transmission gratings — 111
4	Uniqueness for inverse scattering problems — 115

4.1	Inverse scattering of incident pressure waves — 116
4.2	Inverse scattering of incident shear waves — 121
5	Numerical solution of direct and inverse scattering problems — 122
5.1	A discrete Galerkin method for (DP) —— 122
5.2	A two-step algorithm for (IP) —— 125
Oliver G	5. Ernst and Martin J. Gander
Multigr	id methods for Helmholtz problems: A convergent scheme in 1D using
standa	rd components —— 135
1	Introduction —— 135
2	Smoothing — 139
2.1	Smoothing analysis — 140
2.2	Jacobi smoothing — 142
2.3	Two-step Jacobi smoothing —— 145
3	Coarse-grid correction — 152
3.1	The Laplacian —— 158
3.2	.The Helmholtz operator —— 159
4	Two-grid iteration —— 165
4.1	The Laplacian —— 165
4.2	The Helmholtz operator — 167
5	Numerical examples — 175
5.1	Two-grid experiments — 176
5.2	Multigrid experiments, complexity — 178
6	Conclusions — 182
Marcus	J. Grote and Teodora Mitkova
Explicit	local time-stepping methods for time-dependent wave propagation 187
1	Introduction — 187
2	Finite element discretizations for the wave equation —— 190
2.1	Continuous Galerkin formulation — 190
2.2	Interior penalty discontinuous Galerkin formulation — 191
2.3	Nodal discontinuous Galerkin formulation — 193
3	Leap-frog-based LTS methods —— 194
3.1	Second-order method for undamped waves — 195
3.2	Fourth-order method for undamped waves — 199
3.3	Second-order leap-frog/Crank-Nicolson-based method for damped waves — 202
4	Adams-Bashforth-based LTS methods for damped waves — 205
5	Numerical results — 211
5.1	Stability — 211
5.2	Convergence — 212

5.3	Two-dimensional example —— 214
6	Concluding remarks — 215
Frédério	Nataf
Absorbi	ing boundary conditions and perfectly matched layers in wave propagation
problen	ns 219
1	Introduction —— 219
2	ABC — 220
2.1	Exact ABC — 221
2.2	Approximation of the exact ABC — 222
3	Plane waves analysis of an ABC —— 224
4	Perfectly matched layers — 225
4.1	Helmholtz equation —— 226
4.2	The wave equation —— 228
5	Computation of the reflection coefficient of a PML — 229
6	Conclusion —— 231
Roland '	W. E. Potthast
Dynami	c inverse scattering — 233
1	Introduction —— 233
2	Reconstruction of time-dependent pulses by the point-source
	method —— 236
3	Time-domain probe method (TDPM) — 238
4	Orthogonality sampling — 240
5	Dynamic inversion via data assimilation techniques — 240
5.1	Three-dimensional variational data assimilation — 242
5.2	Cycled probing and sampling method — 244
5.3	Partial reconstruction matching scheme —— 245
6	Numerical examples —— 247
Olaf Ste	inbach
Bounda	ry integral equations for Helmholtz boundary value and transmission
problen	ns — 253
1	Introduction — 253
2	Boundary integral equations — 255
2.1	Boundary integral operators —— 255
2.2	Coercivity of boundary integral operators — 258
2.3	Injectivity of boundary integral operators — 260
2.4	Interior Robin boundary value problem — 264
2.5	Boundary integral equations for exterior boundary value
	problems — 266

3	Exterior Dirichlet boundary value problem — 266
3.1	Direct boundary integral equations — 267
3.2	Indirect boundary integral equations — 276
3.3	Regularised combined boundary integral equations — 279
4	Transmission problems — 280
4.1	Steklov-Poincaré operator equations — 281
4.2	Combined boundary integral equations — 285
5	Conclusions — 290

Color plates — 293

Index — 309