Contents

1	1 ne	chergy	and Geometrical Structure of Wolecules	1
	1.1	Absorp	otion and Emission of Light by Dye Molecules	2
	1.2	Infrare	d Radiation from the Earth	7
	1.3	Microv	vaves Arriving from Outer Space	12
	1.4	The Hi	erarchical Structure of Molecular Energy Levels	13
	1.5	The Di	ffraction of Electron Beams and Molecular Structures	15
	1.6	Method	ds of Molecular Structure Determination	18
2	Vib	rating M	lolecules	21
	2.1	How to	Describe Vibrating Molecules	22
	2.2	Molecu	alar Vibration in Quantum Theory	26
		2.2.1	Quantizing the Harmonic Oscillator	27
		2.2.2	The Energy Level of the Harmonic Oscillator	27
		2.2.3	Determination of Potentials by Infrared Absorption	32
		2.2.4	Eigenfunctions of Harmonic Oscillators	34
		2.2.5	The Hermite Recurrence Formula	36
		2.2.6	The Eigenfunction System of a Harmonic Oscillator	38
	2.3	The Ha	armonic Oscillator and Its Applications	40
		2.3.1	Hermitian Operators and the Bracket Notation	41
		2.3.2	Calculations of Expectation Values Using Eigenfunctions .	45
		2.3.3	Matrix Elements of x and Selection Rules for Infrared	
			Absorptions	47
		2.3.4	Overtone Absorption	49
		2.3.5	Matrix Elements of x^2 and the Expectation Value	
			of the Potential Energy	52
		2.3.6	Creation and Annihilation Operators	57
		2.3.7	Evaluation of Perturbation Energy	61
		2.3.8	Morse Potential	63
	2.4	The In	version Motion of Ammonia Molecules	68
		2.4.1	The Infrared Absorption Spectrum	69
		2.4.2	Parity of Wave Functions	71
		-	. ,	

xii Contents

		2.4.3	Energy Level Splitting and Potential Barriers	72
		2.4.4	The Geometrical Structure of Ammonia and the Period	
			of the Inversion Motion	74
	2.5	How t	o Treat the Vibration of Polyatomic Molecules	77
		2.5.1	Degrees of Freedom of Molecular Motions	78
		2.5.2	What Are Normal Modes?	80
		2.5.3	Normal Modes and Matrix Diagonalization	87
		2.5.4	The Vibrational Hamiltonian Represented by Normal	
			Coordinates	89
		2.5.5	The Quantum Theory of Normal Mode Vibrations	93
		2.5.6	Normal Modes of a Polyatomic Molecule Composed	
			of <i>n</i> Atoms	96
		2.5.7	Representation of Normal Modes in Terms of Internal	
			Coordinates	
		2.5.8	Analysis of Normal Modes by the GF Matrix Method	105
		2.5.9	Anharmonic Expansion of Potentials by Dimensionless	
			Coordinates	112
3	Rota	ating M	lolecules	119
	3.1	_	cular Rotation and Molecular Structure	
		3.1.1	Microwave Spectroscopy	120
		3.1.2	The Quantum Theory of Molecular Rotation (Diatomic	
			Molecules)	121
		3.1.3	Rotational Energy Levels of Linear Molecules and	
			Structure Determination by Means of Isotope Substitution .	125
	3.2	The A	ngular Momentum of Molecular Rotation	128
		3.2.1	Angular Momentum Operators	
		3.2.2	Commutation Relations of Angular Momentum Operators .	130
		3.2.3	Raising and Lowering Operators	132
		3.2.4	Eigenvalues of Angular Momentum Operators	134
		3.2.5	Eigenfunctions of Angular Momentum Operators	136
	3.3	Molec	cular Rotation from the Point of View of Classical Mechanics	141
		3.3.1	Molecular Rotation and Euler Angles	141
		3.3.2	Matrix Representation of the Coordinate Rotation	144
		3.3.3	The Kinetic Energy and Angular Momentum	
			of the Rotation of a Molecule	146
		3.3.4	Classification of Molecules by Values of the Moments	
			of Inertia	149
	3.4		cular Rotation from the Point of View of Quantum Mechanics	152
		3.4.1	Quantum Mechanical Hamiltonians of Molecular Rotations	152
		3.4.2	Angular Momenta of Overall Rotations in Molecule-Fixed	
			Coordinate Systems	157
		3.4.3	Energy Level Diagrams of Prolate and Oblate Top	
			Molecules	161

Contents xiii

		3.4.4	Energy Levels of Diatomic and Linear Molecules	163
		3.4.5	Energy Levels of Spherical Top Molecules	164
		3.4.6	Energy Levels of Asymmetric Top Molecules	164
		3.4.7	Calculating the Rotational Energy Levels of an	
			Asymmetric Top Molecule for $J = 0$ and $J = 1 \dots \dots$	166
		3.4.8	Wang's Transformation	170
		3.4.9	Symmetry in the Rotational Levels of an Asymmetric Top	
			Molecule	173
	3.5	Deterr	mination of Molecular Structures Based on Rotational Spectra	176
		3.5.1	Molecular Structures of Symmetric Top Molecules	176
		3.5.2	Determining the Rotational Constants of Asymmetric Top	
			Molecules	179
		3.5.3	Molecular Structures of Asymmetric Top Molecules	
	3.6	Rotati	ng and Vibrating Molecules	188
		3.6.1	Rotational Structures of Vibrational Transitions	188
		3.6.2	Rotational Structures of Electronic Transitions	193
4	Scat	toring '	Electrons	107
7	4.1	_	ring Electron Waves	
	4.2		on Scattering by Atoms	
	7.2	4.2.1	The Schrödinger Equation for Scattering	
		4.2.2	Representation of the Scattering Amplitude by Use	204
		7.2.2	of the Born Approximation	208
		4.2.3	Electron Scattering by Atoms	
	4.3		on Scattering by Molecules	
	7.5	4.3.1	The Scattering Amplitude of Electron Scattering	<i>_</i> 1, _
		4.5.1	by a Molecule	212
		4.3.2	The Scattering and Interference of an Electron Beam	
			by a Diatomic Molecule	214
	4.4	Phase	Shift of the Scattering Electron Wave	
	• • •	4.4.1	Partial-Wave Expansions of Scattered Waves	
		4.4.2	The Behavior of Partial Waves in the Asymptotic Region .	
		4.4.3	The Partial Wave Expansion of Plane Waves	
		4.4.4	The Partial Wave Expansion of Scattering Amplitudes	
		4.4.5	Phase Shift in Electron Diffraction	
	4.5		ffect of Molecular Vibration	
		4.5.1	Mean Square Amplitudes	
		4.5.2	The r_a Structure and the r_g Structure	
	4.6	Electr	on Beam Scattering by Polyatomic Molecules	
		4.6.1	Molecular Scattering Curves and Radial Distribution	
			Curves	241
		4.6.2	From a Molecular Scattering Curve to the Molecular	
			Structure	244
		4.6.3	The Shrinkage Effect	246

xiv	Contents
-----	----------

4.6.4 4.6.5																
For Further Rea	_															
Subject Index .																261
Formula Index																267