Table of Contents

Introduction: Nano- (and micro-)materials and human wellbeing — 1

1	Coating antibacterial nanoparticles on textiles: Towards the future
	hospital in which all textiles will be antibacterial — 3
1.1	Introduction: Application of nanotechnology for "smart" textiles — 3
1.2	Sonochemical method for the synthesis of nanostructured materials and
	their adherence to solid substrates — 6
1.3	Ultrasound assisted deposition of metal nano-oxides on textiles and their antibacterial properties —— 8
1.3.1	Synthesis and deposition of CuO nanoparticles — 8
1.3.2	Finishing of textiles with crystalline TiO ₂ nanoparticles via a one-step process —— 10
1.3.3	Synthesis and deposition of ZnO — 16
1.3.4	Enzymatic pretreatment as a means of enhancing antibacterial activity and stability of ZnO nanoparticles sonochemically coated on cotton fabrics —— 22
1.3.5	Size dependence of the antibacterial activity of ZnO NPs —— 28
1.4	Conclusion — 28
	Bibliography —— 29
2	Automated solutions for high-throughput experimentation in
	heterogeneous catalyst research —— 35
2.1	Introduction —— 35
2.2	The preparation of solid catalysts —— 37
2.3	Automation challenges examples —— 37
2.3.1	Integration of commercially available devices —— 38
2.4	A fully-automated solution —— 39
2.4.1	SOPHAS-CAT HT —— 39
2.4.2	The loading —— 39
2.4.3	The synthesizer — 40
2.4.4	Extrudate preparation —— 41
2.4.5	Impregnation and drying —— 41
2.4.6	Calcination 42
2.4.7	Scraping and pelletizing —— 42
2.4.8	Grinding — 43
2.4.9	Sieving — 43
2.5	Conclusion — 44
	Bibliography —— 45

3

3.1	Introduction —— 47
3.2	XPS in the nanodomain —— 47
3.3	Conclusions — 53
	Bibliography —— 55
4	Single crystal and powder XRD techniques: An overview —— 57
4.1	The single crystal XRD technique —— 57
4.1.1	Basics of the radiation-matter interaction 58
4.1.2	Basics of crystallography and X-ray diffraction by crystal — 61
4.1.3	Solving the phase problem by direct methods —— 69
4.2	The powder XRD technique —— 74
4.2.1	Indexation —— 74
4.2.2	Space group determination — 76
4.2.3	Profile decomposition and intensity extraction — 77
4.2.4	Structure solution — 79
4.2.5	Rietveld refinement — 84
4.2.6	Examples — 85
4.3	Conclusions — 88
	Bibliography —— 89
5	Structural and electronic characterization of nanosized inorganic
	materials by X-ray absorption spectroscopies — 93
5.1	Introduction — 93
5.2	XAS spectroscopy: Basic background —— 93
5.2.1	Theoretical background of XAS spectroscopy — 94
5.2.2	The XANES region —— 96
5.2.3	The EXAFS region —— 96
5.2.4	Advantages and drawbacks of the technique — 99
5.3	CuCl ₂ /Al ₂ O ₃ -based catalysts for ethylene oxychlorination — 100
5.3.1	Industrial relevance of the CuCl ₂ /Al ₂ O ₃ system — 100
5.3.2	Preliminary in situ XAFS experiments —— 101
5.3.2.1	The determination of the Cu-aluminate phase: How to avoid possible
	pitfalls in the EXAFS data analysis —— 101
5.3.2.2	Catalyst reactivity with the separate reactants: <i>In situ</i> XAFS experiments — 103
5.3.3	Operando experiments and criteria used to face the presence of more
- ,	than one phase in the sample — 105
5.4	Structural and electronic configuration of Cp ₂ Cr molecules encapsulated
	in PS and Na-Y zeolite and their reactivity towards CO —— 109
5.4.1	Structure of Cp ₂ Cr encapsulated in PS and Na-Y zeolite matrices — 109

Insights from XPS on nanosized inorganic materials — 47

5.4.2 Determination of the electronic structure of Cp₂Cr by combined UV-Vis and XANES spectroscopies - 111 Reactivity of Cp2Cr hosted in PS and in Na-Y zeolite towards CO: IR and 5.4.3 XAFS results — 114 Transition metal complexes in solution: The $[cis-Ru(bpv)_2(pv)_2]^{2+}$ case 5.5 studv — 117 Structure refinement of cis- $[Ru(bpy)_2(py)_2]^{2+}$ in aqueous solution by 5.5.1 EXAFS spectroscopy — 118 Advanced details of the EXAFS structure refinement of cis-5.5.2 $[Ru(bpv)_2(pv)_2]^{2+}$ complex — 120 5.6 EXAFS study on MOFs of the UiO-66/UiO-67 family: comparison with XRPD and ab initio investigations —— 122 Applications of X-ray micro beams: Electroabsorption modulated laser for 5.7 optoelectronic devices — 127 Bibliography - 129 6 Lens-less scanning X-ray microscopy with SAXS and WAXS contrast --- 137 6.1 Introduction --- 137 6.2 X-ray microscopes — 138 6.3 Small-angle and wide-angle scattering contrast (SAXS and WAXS) — 143 6.4 Applications -- 149 Bibliography - 154 7 Characterization of inorganic nanostructured materials by electron microscopy — 157 Introduction — 157 7.1 7.2 Electron microscopy — 158 Working principles — 159 7.2.1 7.3 Scanning electron microscopy — 161 Magnification and resolution of SEM - 163 7.3.1 7.3.2 Interaction of the electron beam with the sample: elastic and inelastic scattering - 163 7.3.2.1 Secondary electrons and their detection — 164 7.3.2.2 Backscattered electrons and their detection — 166 7.3.2.3 Energy loss — 167 7.4 Transmission electron microscopy — 167 The instrument — 168 7.4.1 Image formation process — 169 7.4.2 7.5 Sample preparation for electron microscopy — 174 SEM sample preparation — 174 7.5.1

7.5.1.1 Casting — 174

7.5.1.2	Ion sputtering —— 175
7.5.2	Sample preparation for TEM —— 175
7.6	Inorganic nanocrystal investigation by SEM —— 177
7.7	Inorganic nanocrystal investigation by TEM —— 186
7.7.1	Bright field mode —— 186
7.7.2	Dark field contrast mode — 189
7.7.3	Diffraction mode – electron diffraction —— 190
7.7.3.1	Selected area diffraction —— 191
7.7.3.2	Convergent beam electron diffraction —— 191
7.7.3.3	Investigating crystalline structure: High-resolution TEM —— 192
7.8	Chemical analysis by electron microscopy —— 193
7.8.1	Energy dispersion spectroscopy (EDS) — 193
7.8.2	Electron energy loss spectroscopy (EELS) — 194
7.8.3	Energy-filtered transmission electron microscopy (EFTEM) —— 195
7.8.4	Some examples of chemical analysis in electron microscopy — 195
7.9	Conclusions — 197
	Bibliography —— 197
8	Nanosized particles: questioned for their potential toxicity, but some are
	applied in biomedicine — 199
8.1	Introduction — 199
8.2	Nanoparticles classification —— 199
8.3	Nanoparticles and biosystems — 201
8.4	Stability and toxicity —— 202
8.5	Fields of application of engineered nanoparticles — 203
8.6	Access to bio-organisms and toxicity to organisms —— 204
8.7	Applications of nanoparticles in biomedicine — 205
8.8	Measurement of the concentration — 206
8.9	Conclusions — 206
	Bibliography —— 207

Index ---- 211