Contents

1	Varia	ational F	Formulations and Finite Element Methods
	1.1	Classic	cal Methods
	1.2	Model	Problems and Elementary Properties of Some
		Function	onal Spaces
		1.2.1	Eigenvalue Problems
	1.3	Duality	y Methods
		1.3.1	Generalities
		1.3.2	Examples for Symmetric Problems
		1.3.3	Duality Methods for Non Symmetric Bilinear Forms
		1.3.4	Mixed Eigenvalue Problems
	1.4	Domai	n Decomposition Methods, Hybrid Methods
	1.5	Modifi	ed Variational Formulations
		1.5.1	Augmented Formulations
		1.5.2	Perturbed Formulations
	1.6	Biblio	graphical Remarks
2	Fund	ction Spa	aces and Finite Element Approximations
	2.1	Proper	ties of the Spaces $H^m(\Omega)$, $H(\operatorname{div}; \Omega)$, and $H(\operatorname{curl}; \Omega)$
		2.1.1	Basic Properties
		2.1.2	Properties Relative to a Partition of Ω
		2.1.3	Properties Relative to a Change of Variables
		2.1.4	De Rham Diagram
	2.2	Finite	Element Approximations of $H^1(\Omega)$ and $H^2(\Omega)$
		2.2.1	Conforming Methods
		2.2.2	Explicit Basis Functions on Triangles and Tetrahedra
		2.2.3	Nonconforming Methods
		2.2.4	Quadrilateral Finite Elements on Non Affine Meshes
		2.2.5	Quadrilateral Approximation of Scalar Functions
		2.2.6	Non Polynomial Approximations
		2.2.7	Scaling Arguments

vii

2.3	Simplici	ial Approximations of $H(\text{div}; \Omega)$ and $H(c\underline{ur}l; \Omega)$	84
	2.3.1	Simplicial Approximations of $H(\text{div}; \Omega)$	84
	2.3.2	Simplicial Approximation of $H(curl; \Omega)$	92
2.4	Approxi	imations of $H(\text{div}; K)$ on Rectangles and Cubes	96
	2.4.1	Raviart-Thomas Elements on Rectangles and Cubes	97
	2.4.2	Other Approximations of $H(\text{div}; K)$ on Rectangles	98
	2.4.3	Other Approximations of $H(\text{div}; K)$ on cubes	101
	2.4.4	Approximations of $H(curl; K)$ on Cubes	101
2.5	Interpol	ation Operator and Error Estimates	103
	2.5.1	Approximations of $H(\text{div}; K)$	103
	2.5.2	Approximation Spaces for $H(\text{div}; \Omega)$	109
	2.5.3	Approximations of $H(curl; \Omega)$	110
	2.5.4	Approximation Spaces for $H(c\underline{url}; \Omega)$	113
	2.5.5	Quadrilateral and Hexahedral Approximation	
		of Vector-Valued Functions in $H(\text{div}; \Omega)$	
		and $H(c\underline{url}; \Omega)$	114
	2.5.6	Discrete Exact Sequences	115
2.6	Explicit	Basis Functions for $H(\text{div}; K)$ and $H(\text{curl}; K)$	
	on Triar	igles and Tetrahedra	116
	2.6.1	Basis Functions for $H(\text{div}; K)$:	
		The Two-Dimensional Case	117
	2.6.2	Basis Functions for $H(\text{div}; K)$:	
		The Three-Dimensional Case	119
	2.6.3	Basis Functions for $H(\operatorname{curl}; K)$:	
		The Two-Dimensional Case	120
	2.6.4	Basis Functions for $H(curl; K)$:	
		The Three-Dimensional Case	120
2.7	Concluc	ling Remarks	121
Algeb	oraic Asp	pects of Saddle Point Problems	123
3.1	Notation	n, and Basic Results in Linear Algebra	126
	3.1.1	Basic Definitions	126
	3.1.2	Subspaces	127
	3.1.3	Orthogonal Subspaces	129
	3.1.4	Orthogonal Projections	130
	3.1.5	Basic Results	132
	3.1.6	Restrictions of Operators	136
3.2	Existen	ce and Uniqueness of Solutions:	
	The Sol	vability Problem	140
	3.2.1	A Preliminary Discussion	141
	3.2.2	The Necessary and Sufficient Condition	142
	3.2.3	Sufficient Conditions	144
	3.2.4	Examples	146
	3.2.5	Composite Matrices	148

3

	3.3	The So	olvability Problem for Perturbed Matrices	151
		3.3.1	Preliminary Results	151
		3.3.2	Main Results	153
		3.3.3	Examples	154
	3.4	Stabili	ty	155
		3.4.1	Assumptions on the Norms	157
		3.4.2	The <i>inf-sup</i> Condition for the Matrix B:	
			An Elementary Discussion	161
		3.4.3	The <i>inf-sup</i> Condition and the Singular Values	164
		3.4.4	The Case of A Elliptic on the Whole Space	166
		3.4.5	The Case of A Elliptic on the Kernel of B	172
		3.4.6	The Case of A Satisfying an inf-sup	
			on the Kernel of <i>B</i>	174
	3.5	Additio	onal Results	176
		3.5.1	Some Necessary Conditions	176
		3.5.2	The Case of B Not Surjective. Modification	
			of the Problem	177
		3.5.3	Some Special Cases	178
		3.5.4	Composite Matrices	181
	3.6	Stabili	ty of Perturbed Matrices	183
		3.6.1	The Basic Estimate	183
		3.6.2	The Symmetric Case for Perturbed Matrices	190
4	Sadd	le Point	Problems in Hilbert Spaces	197
	4.1	Remin	ders on Hilbert Spaces	197
		4.1.1	Scalar Products, Norms, Completeness	198
		4.1.2	Closed Subspaces and Dense Subspaces	201
		4.1.3	Orthogonality	202
		4.1.4	Continuous Linear Operators, Dual spaces,	
			Polar Spaces	205
		4.1.5	Bilinear Forms and Associated Operators:	
			Transposed Operators	210
		4.1.6	Dual Spaces of Linear Subspaces	215
		4.1.7	Identification of a Space with its Dual Space	218
		4.1.8	Restrictions of Operators to Closed Subspaces	219
		4.1.9	Quotient Spaces	221
	4.2	Exister	nce and Uniqueness of Solutions	223
		4.2.1	Mixed Formulations in Hilbert Spaces	223
		4.2.2	Stability Constants and <i>inf-sup</i> Conditions	226
		4.2.3	The Main Result	228
		4.2.4	The Case of $\text{Im}B \neq Q'$	230
		4.2.5	Examples	232
	4.3	Exister	nce and Uniqueness for Perturbed Problems	238
		4.3.1	Regular Perturbations	238
		4.3.2	Singular Perturbations	257

5	Аррг	roximati	on of Saddle Point Problems	265
	5.1	Basic I	Results	266
		5.1.1	The Basic Assumptions	266
		5.1.2	The Discrete Operators	269
	5.2	Error E	Estimates for Finite Dimensional Approximations	273
		5.2.1	Discrete Stability and Error Estimates	273
		5.2.2	Additional Error Estimates for the Basic Problem	276
		5.2.3	Variants of Error Estimates	279
		5.2.4	A Simple Example	285
		5.2.5	An Important Example: The Pressure	
			in the Homogeneous Stokes Problem	293
	5.3	The Ca	ase of Ker $B_h^t \neq \{0\}$	295
		5.3.1	The Case of $\operatorname{Ker} B_h^t \subseteq \operatorname{Ker} B^t$	295
		5.3.2	The Case of Ker $B_h^t \not\subseteq$ Ker B^t	297
		5.3.3	The Case of β_h or $\tilde{\beta}_h$ going to zero	299
	5.4	The <i>in</i>	<i>f-sup</i> Condition: Criteria	301
		5.4.1	Some Linguistic Considerations	301
		5.4.2	General Considerations	302
		5.4.3	The <i>inf-sup</i> Condition and the <i>B</i> -Compatible	
			Interpolation Operator Π_h	303
		5.4.4	Construction of Π_h	305
		5.4.5	An Alternative Strategy: Switching Norms	306
	5.5	Extens	sions of Error Estimates	309
		5.5.1	Perturbed Problems	309
		5.5.2	Penalty Methods	312
		5.5.3	Singular Perturbations	315
		5.5.4	Nonconforming Methods	317
		5.5.5	Dual Error Estimates	323
	5.6	Numer	rical Properties of the Discrete Problem	326
		5.6.1	The Matrix Form of the Discrete Problem	327
		5.6.2	And if the <i>inf-sup</i> Condition Does Not Hold?	329
		5.6.3	Solution Methods	331
	5.7	Conclu	uding Remarks	335
6	Com	nlement	ts: Stabilisation Methods Figenvalue Problems	337
v	61	Allom	ented Formulations	337
	0.1	611	An Abstract Framework for Stabilised Methods	337
		612	Stabilising Terms	339
		613	Stability Conditions for Augmented Formulations	347
		614	Discretisations of Augmented Formulations	346
		615	Stabilising with the "Flement-Wise Fountions"	350
	62	Other	Stabilisations	355
	0.2	621	General Stability Conditions	355
		622	Stability of Discretised Formulations	358
		0.2.2	Submy of Discretised Formulations	550

	6.3	Minimal Stabilisations	360		
		6.3.1 Another Form of Minimal Stabilisation	374		
	6.4	Enhanced Strain Methods	379		
	6.5	Eigenvalue Problems	381		
		6.5.1 Some Classical Results	384		
		6.5.2 Eigenvalue Problems in Mixed Form	385		
		6.5.3 Special Results for Problems of Type $(f, 0)$			
		and (0, g)	387		
		6.5.4 Eigenvalue Problems of the Type $(f, 0)$	389		
		6.5.5 Eigenvalue Problems of the Form (0, g)	392		
7	Mive	d Methods for Elliptic Problems	401		
'	7 1	Non-standard Methods for Dirichlet's Problem	401		
	/.1	7.1.1 Description of the Problem	401		
		7.1.2 Mixed Finite Element Methods for Dirichlet's	.01		
		Problem	403		
		7 1 3 Eigenvalue Problem for the Mixed Formulation	408		
		7.1.4 Primal Hybrid Methods	410		
		7.1.5 Primal Macro-hybrid Methods and Domain			
		Decompositions	419		
		7.1.6 Dual Hybrid Methods	420		
	7.2	Numerical Solutions	426		
		7.2.1 Preliminaries	426		
		7.2.2 Inter-element Multipliers	426		
	7.3	A Brief Analysis of the Computational Effort	430		
	7.4	Error Analysis for the Multiplier	432		
	7.5	Error Estimates in Other Norms	437		
	7.6	Application to an Equation Arising from			
		Semiconductor Theory	. 439		
	7.7	Using Anisotropic Meshes	. 441		
	7.8	Relations with Finite Volume Methods	. 445		
		7.8.1 The One and Two-Dimensional Cases	. 446		
		7.8.2 The Two-Dimensional Case	. 447		
		7.8.3 The Three-Dimensional Case	. 452		
	7.9	Nonconforming Methods: A Trap to Avoid	. 453		
	7.10	Augmented Formulations (Galerkin Least Squares Methods)	. 455		
	7.11	A Posteriori Error Estimates	. 457		
8	Inco	npressible Materials and Flow Problems	459		
Ŭ	81	Introduction	. 460		
	8.2	The Stokes Problem as a Mixed Problem	. 462		
	.	8.2.1 Mixed Formulation	. 462		
	8.3	Some Examples of Failure and Empirical Cures	. 466		
	0.0	8.3.1 Continuous Pressure: The $P_1 - P_1$ Element	. 466		
		8.3.2 Discontinuous Pressure: The $P_1 - P_0$	_ 0		
		Approximation	. 467		
		FF			

8.4	Buildin	g a B-Compatible Operator: The Simplest				
	Stable E	Elements	468			
	8.4.1	Building a B-Compatible Operator	469			
	8.4.2	A Stable Case: The MINI Element	470			
	8.4.3	Another Stable Approximation:				
		The Bi-dimensional $\underline{P}_2 - P_0$ Element	471			
	8.4.4	The Nonconforming $\underline{P}_1 - P_0$ Approximation	475			
8.5	Other T	echniques for Checking the <i>inf-sup</i> Condition	477			
	8.5.1	Projection onto Constants	477			
	8.5.2	Verfürth's Trick	478			
	8.5.3	Space and Domain Decomposition Techniques	480			
	8.5.4	Macro-element Technique	482			
	8.5.5	Making Use of the Internal Degrees of Freedom	484			
8.6	Two-Di	mensional Stable Elements	486			
	8.6.1	Continuous Pressure Elements	487			
	8.6.2	Discontinuous Pressure Elements	488			
	8.6.3	Quadrilateral Elements, $Q_{1} - P_{k-1}$ Elements	489			
8.7	Three-I	Dimensional Stable Elements	491			
	8.7.1	Continuous Pressure 3-D Elements	491			
	8.7.2	Discontinuous Pressure 3-D Elements	491			
8.8	$\underline{P}_k - F$	P_{k-1} Schemes and Generalised Hood–Taylor Elements	494			
	8.8.1	Discontinuous Pressure $\underline{P}_k - P_{k-1}$ Elements	494			
	8.8.2	Generalised Hood-Taylor Elements	496			
8.9	Other I	Developments for Divergence-Free Stokes				
	Approx	imation and Mass Conservation	504			
	8.9.1	Exactly Divergence-Free Stokes Elements,				
		Discontinuous Galerkin Methods	505			
	8.9.2	Stokes Elements Allowing for Element-Wise				
		Mass Conservation	506			
8.10	Spuriou	as Pressure Modes	507			
	8.10.1	Living with Spurious Pressure Modes:				
		Partial Convergence	510			
	8.10.2	The Bilinear Velocity-Constant Pressure				
		$Q_{\perp} - P_0$ Element	511			
8.11	Eigenva	alue Problems	517			
8.12	Nearly Incompressible Elasticity, Reduced Integration					
	Methods and Relation with Penalty Methods 51					
	8.12.1	Variational Formulations				
		and Admissible Discretisations	519			
	8.12.2	Reduced Integration Methods	520			
	8.12.3	Effects of Inexact Integration	523			
8.13	Other S	Stabilisation Procedures	527			
	8.13.1	Augmented Method for the Stokes Problem	528			
	8.13.2	Defining an Approximate Inverse S_h^{-1}	530			
	8.13.3	Minimal Stabilisations for Stokes	534			

	8.14	Conclue	ling Remarks: Choice of Elements	537
		8.14.1	Choice of Elements	537
9	Com	plements	on Elasticity Problems	539
	9.1	Introdu	ction	539
		9.1.1	Continuous Formulation of Stress Methods	540
		9.1.2	Numerical Approximations of Stress Formulations	543
	9.2	Relaxed	l Symmetry	544
	9.3	Tensors	, Tensorial Notation and Results on Symmetry	544
		9.3.1	Continuous Formulation of the Relaxed	
			Symmetry Approach	548
		9.3.2	Numerical Approximation of	
			Relaxed-Symmetry Formulations	551
	9.4	Some F	amilies of Methods with Reduced Symmetry	555
		9.4.1	Methods Based on Stokes Elements	555
		9.4.2	Stabilisation by $H(curl)$ Bubbles	558
		9.4.3	Two Examples	561
		9.4.4	Methods Based on the Properties of Π_h^1	563
	9.5	Loosing	g the Inclusion of Kernel: Stabilised Methods	567
	9.6	Conclu	ding Remarks	572
10	Complements on Plate Problems			575
	10.1	A Mixe	d Fourth-Order Problem	575
		10.1.1	The $\psi - \omega$ Biharmonic Problem	575
		10.1.2	Eigenvalues of the Biharmonic Problem	578
	10.2	Dual H	ybrid Methods for Plate Bending Problems	579
	10.3	Mixed 1	Methods for Linear Thin Plates	588
	10.4	Modera	tely Thick Plates	596
		10.4.1	Generalities	596
		10.4.2	The Mathematical Formulation	598
		10.4.3	Mixed Formulation of the Mindlin-Reissner Model	600
		10.4.4	A Decomposition Principle and the Stokes	
			Connection	606
		10.4.5	Discretisation of the Problem	609
		10.4.6	Continuous Pressure Approximations	622
		10.4.7	Discontinuous Pressure Elements	622
11	Mixe	d Finite	Elements for Electromagnetic Problems	625
	11.1	Useful	Results About the Space $H(\operatorname{curl}; \Omega)$,	
		its Bou	ndary Traces, and the de Rham Complex	626
		11.1.1	The de Rham Complex and the Helmholtz	
			Decomposition When Ω Is Simply Connected	626
		11.1.2	The Friedrichs Inequality	627
		11.1.3	Extension to More General Topologies	627
		11.1.4	$H(\operatorname{curl}; \Omega)$ in Two Space Dimensions	628

11.2	The Time Harmonic Maxwell System	629	
	11.2.1 Maxwell's Eigenvalue Problem	630	
	11.2.2 Analysis of the Time Harmonic Maxwell System	633	
	11.2.3 Approximation of the Time Harmonic		
	Maxwell Equations	636	
11.3	Approximation of the Maxwell Eigenvalue Problem	639	
	11.3.1 Analysis of the Two-Dimensional Case	641	
	11.3.2 Discrete Compactness Property	644	
	11.3.3 Nodal Finite Elements	647	
	11.3.4 Edge Finite Elements	653	
11.4	Enforcing the Divergence-Free Condition by a Penalty		
	Method	654	
11.5	Some Remarks on Exterior Calculus	658	
11.6	Concluding remarks	662	
Reference	·S	663	
Index			