Contents

Part I Basic Concept

1	Introduction		
	1.1	Relaxation Time Approximation (RTA) and Current	
		Vertex Correction (CVC)	3
	1.2	Non-Fermi-Liquid-Like Transport Phenomena	
		in Cuprate High- T_c Cuprates	5
	1.3	Non-Fermi Liquid Transport Phenomena in CeMIn ₅	
		$(M = \text{Co, Rh, or Ir})$ and κ -(BEDT-TTF)	8
	1.4	Fermi Liquid or Non-Fermi Liquid?	9
	Refe	rences	10
2	Fluctuation Theory		15
	2.1	Phenomenological Spin Fluctuation Model	15
	2.2	Model Hamiltonian and FLEX Approximation	16
	2.3	Hot/Cold-Spot Structure and T-Linear Resistivity	
		in Nearly AF Metals	20
	2.4	Validity of the Spin Fluctuation Theories	24
	Refe	rences	25
3	Ano	malous Transport Phenomena in Nearly	
	AF I	Fermi Liquids	27
	3.1	Boltzmann Transport Theory and RTA	27
	3.2	The Variational Principle and CVC	31
	3.3	Analysis of the CVC Based on the Fermi Liquid Theory	33
	3.4	CVC and Ward Identity	40
	3.5	CVC in Nearly AF Fermi Liquids	44
	Refe	rences	48

x Contents

4	Ano 4.1	malous Hall Effect (AHE) and Spin Hall Effect (SHE) Relation Between AHE and SHE	51 51		
	4.2	AHE in Two-Orbital Tight-Binding Model	52		
	4.3	General Expression for the AHC and SHC	60		
		prences	62		
	T(C)	<i>A</i> elees	٠ -		
Pa	rt II	Recent Advances			
5		nsport Phenomena in Cuprate HTSCs Above T*	65		
	5.1	FLEX+CVC Approximation	65		
	5.2	Resistivity and Hall Coefficient	67		
	5.3	Magnetoresistance	71		
	5.4	Thermoelectric Power	74		
	5.5	Comments on Over-Doped HTSCs and Other			
		Transport Coefficients	76		
	5.6	Summary of This Chapter	78		
	Refe	erences	79		
6	Tra	nsport Phenomena in HTSCs Below T*	81		
	6.1	Mechanism of Pseudo-Gap Phenomena: Suppression			
		of ρ , $R_{\rm H}$ and S Below T^*	81		
	6.2	Enhancement of Nernst Coefficient			
		and Magnetoresistance Below T*	85		
	6.3	Fermi Arc Picture and Transport Phenomena	88		
	6.4	Summary and Future Problems	89		
	Refe	erences	90		
7	AC	Transport Phenomena in HTSCs	93		
	7.1	AC Hall Effect in Hole-Doped Systems	94		
	7.2	AC Hall Effect in Electron-Doped Systems	98		
	Refe	erences	101		
8	Impurity Effects in Nearly AF Metals				
	8.1	Hall Coefficient in the Presence			
		of "Weak" Local Impurities	104		
	8.2	Effect of "Strong" Local Impurities Near AF QCP	106		
	Ref	erences	112		
9	Anomalous Transport Behaviors in Heavy Fermions				
	and	Organic Superconductors	115		
	9.1	$CeMIn_5$ ($M = Co, Rh, Ir$)	115		
	9.2	κ -(BEDT-TTF)	120		
	D.C		100		

Contents xi

10	Multiorbital Systems		125
	10.1	Heavy Fermion Systems: Grand	
		Kadowaki-Woods Relation	125
	10.2	Fe-Based Superconductors	133
	Refer	ences	142
11	AHE	and SHE in Multiorbital Systems	145
	11.1	SHE in Transition Metals	145
	11.2	AHE in Transition Metals	151
	11.3	Spin-Structure-Driven AHE in Pyrochlore Compounds	152
	11.4	AHE and SHE in Heavy Fermion Systems	159
	11.5	Summary of This Chapter	164
	Refer	ences	167
Ap	pendix	A: Proof of Variational Formula	169
Ap	pendix	B: Expression of $\mathcal{T}^{i,j}(\epsilon,\epsilon';\omega)$	171