

1	Introduction	
1.1	Damage to Steel Structures Caused by Fire	1
1.1.1	Global Collapse of Steel Structures in Fire	1
1.1.2	Damage to Structural Components by Fire	1
1.2	Requirements for Fire Resistance of Steel Structures	2
1.2.1	Ultimate Limit State of Structures in a Fire	2
1.2.2	Load Bearing Capacity Criteria	5
1.2.3	Fire-Resistance Duration Demands	5
1.3	Approach for Determining Fire-Resistance of Steel Structures	6
1.3.1	Experimental Approach	6
1.3.2	Analytical Approach	7
	References	8
2	Fire in Buildings	11
2.1	Basic Concepts	11
2.1.1	Fire Load	11
2.1.2	Heat Released Rate	12
2.2	Compartment Fire	13
2.2.1	Development of Compartment Fire	13
2.2.2	Heat Release Model of Fire before Flashover	15
2.2.3	Conditions Necessary for Flashover	15
2.2.4	Heat Release Rate of the Fire after Flashover	16
2.2.5	Modeling of Compartment Fire	17
2.2.6	Empirical Modeling of Compartment Fire	18
2.3	Large Space Building Fire	22
2.3.1	Characteristics of Large Space Building	22
2.3.2	Characteristics of Large Space Building Fire	22
2.3.3	Simulation of Large Space Building Fire using Zone Model	23
2.3.4	Characteristics of Large Space Building Fire	27
2.4	Standard Fire and Equivalent Exposure Time	31
2.4.1	Standard Fire	31

2.4.2	Equivalent Exposure Time.....	32
References		34
3	Properties of Steel at Elevated Temperatures	37
3.1	Thermal Properties of Structural Steel at Elevated Temperatures	37
3.1.1	Conductivity	37
3.1.2	Specific Heat	38
3.1.3	Density	39
3.2	Mechanical Properties of Structural Steel at High Temperature.....	40
3.2.1	Test Regimes	40
3.2.2	Definition of Yield Strength at High Temperature	41
3.2.3	Mechanical Properties of Structural Steel at High Temperatures.....	42
3.2.4	Yield Strength and Elastic Modulus of Fire-Resistant Steel at High Temperatures	43
3.2.5	Stress-Strain Relationship of Normal Strength Structural Steel and Fire-Resistant Steel at Elevated Temperatures	48
3.3	Mechanical Properties of High Strength Steel at High Temperatures	48
3.3.1	High Strength Bolt	48
3.3.2	High Strength Cable	50
3.4	Properties of Stainless Steel at High Temperatures	54
3.4.1	Thermal Properties of Stainless Steel	54
3.4.2	Mechanical Properties of Stainless Steel at High Temperatures	54
References		64
4	Temperature Elevations of Structural Steel Components Exposed to Fire	67
4.1	Laws of Heat Transfer	67
4.1.1	Heat Transfer in Structural Members	67
4.1.2	Heat Transfer between Hot Smoke and a Structural Member	68
4.2	Practical Calculation Method for Temperature Elevation of Structural Members	69
4.2.1	Calculating Model	69
4.2.2	Temperature Elevation of Structural Component with Uniformly Distributed Temperature	70
4.2.3	Temperature of Structural Component with Non-Uniformly Distributed Temperature	79
4.3	Practical Calculation Method for Temperature Evolution of Structural Members Exposed to a Large Space Building Fire	79
4.3.1	Effects of Flame Radiation on Temperature Elevation of Un-Protected Steel Structural Components	80
4.3.2	Parametric Study	86
4.3.3	Limit Value of Flame Radiation	88
4.4	Example	89
References		90

5	Fire-Resistance of Isolated Flexural Structural Components	93
5.1	Load-bearing Capacity of a Flexural Steel Component at High Temperatures	93
5.1.1	Strength of a Flexural Steel Component at High Temperatures	93
5.1.2	Lateral Torsional Buckling Strength of a Flexural Steel Component at High Temperatures	93
5.1.3	Critical Temperature of a Flexural Steel Component in Fire	95
5.1.4	Example	96
5.2	Fire-resistance of Flexural Steel-Concrete Composite Components	99
5.2.1	Material Properties and Temperature Calculation of a Composite Beam	99
5.2.2	Strength of a Composite Beam at High Temperature	100
5.2.3	Critical Temperature of a Composite Beam	101
5.2.4	Parametric Study	102
5.2.5	Simplified Approach for the Fire Resistance Design of Composite Beams	106
5.2.6	Example and Comparison	108
5.2.7	Experimental Validation	110
	References	113
6	Fire-Resistance of Isolated Compressed Steel Components	115
6.1	Fire Resistance of Axially Compressed Steel Components	115
6.1.1	Load Bearing Capacity of Axially Compressed Steel Components	115
6.1.2	Critical Temperature of an Axially Compressed Component	119
6.1.3	Example	119
6.2	Design Method for a Structural Component under the Combined Axial Force and Bending Moment	122
6.2.1	Stability of a Structural Component under the Combined Axial Force and Bending Moment	122
6.2.2	Cross-Sectional Strength of the Structural Component under the Combined Axial Force and Bending Moment at Elevated Temperatures	123
6.2.3	Critical Temperature of the Structural Component Subjected to the Combined Axial Force and Bending Moment	123
6.2.4	Example	125
	References	129
7	Fire-Resistance of Restrained Flexural Steel Components	131
7.1	Fire-Resistance of a Restrained Steel Beam	131
7.1.1	Fire Test of Restrained Steel Beams	132
7.1.2	Analysis and Design for Fire-Resistance of a Restrained Steel Beam	143

7.2	Fire Resistance of Steel-Concrete Composite Beams	159
7.2.1	Fire Test on Restrained Steel-Concrete Composite Beams ..	159
7.2.2	Analysis of Restrained Steel-Concrete Composite Beams ..	169
7.2.3	Practical Design Method for a Restrained Steel-Concrete Composite Beam	176
7.2.4	Axial Force in the Composite Beam.....	178
	References	184
8	Fire-Resistance of Restrained Steel Columns	189
8.1	Fire Test on Restrained Steel Columns with Axial and Rotational Restraint	189
8.1.1	Test Set-Up and Test Specimen.....	190
8.1.2	Displacement and Temperature Acquisition	192
8.1.3	Test Schedule	193
8.1.4	Test Results	193
8.1.5	Numerical Simulation of the Fire Test	200
8.2	Parametric Study of Restrained Steel Columns in a Fire	202
8.2.1	Parameters	204
8.2.2	Parametric Study on a Restrained Steel Column under Axial Load Only in a Fire	206
8.2.3	Parametric Study of a Restrained Column under Combined Axial Load and Bending Moment in a Fire	207
8.3	Simplified Design Method for Restrained Steel Columns in a Fire ..	214
8.3.1	Design Method for Restrained Columns under Axial Load Only in a Fire	217
8.3.2	Design Methods for the Restrained Columns under Combined Axial Load and Bending Moment	222
8.4	Fire-Resistance of Restrained Columns with Non-Uniform Temperature Distribution	231
8.4.1	Test Arrangement and Instrumentation	232
8.4.2	Temperature Distribution	233
8.4.3	Continuum Model	234
8.4.4	Experiment Study	238
	References	241
9	Fire-Resistance of Composite Concrete Slabs	245
9.1	Fire-resistance Design Method for Composite Concrete Slabs Based on Small Deflection Theory	245
9.1.1	Studied Slabs	245
9.1.2	Parametric Studies	247
9.1.3	Simplified Design Method.....	250
9.1.4	Verification by the Fire Resistance Test	252
9.2	Fire Resistance Design Method for the Composite Slab Considering Membrane Action	252

9.2.1	Development of the Membrane Action of a Composite Slab in a Fire	252
9.2.2	Fire Test on the Composite Slab	256
9.2.3	Analysis of the Composite Slab in Consideration of the Membrane Action in a Fire	268
	References	279
10	Analysis of Steel Moment-Resistant Frames Subjected to a Fire	281
10.1	Element for Analysis	282
10.1.1	Properties of the Elemental Cross-Section	282
10.1.2	Location of the Neutral Axis in an Elastic State	283
10.1.3	Equivalent Axial Stiffness	283
10.1.4	Equivalent Bending Stiffness in an Elastic State	284
10.1.5	Initial Yielding Moment	284
10.1.6	Location of the Neutral Axis in Total Plastic State	284
10.1.7	Plastic Moment	285
10.1.8	Stiffness of Element	285
10.2	Thermal Force of Element	287
10.3	Structural Analysis	287
10.4	Experimental and Theoretical Prediction	290
	References	297
11	Analysis and Design of Large Space Steel Structure Buildings Subjected to a Fire	299
11.1	Practical Analysis Approach for Steel Portal Frames in a Fire	299
11.1.1	Finite Element Modeling and Assumptions	299
11.1.2	Parameters Influencing the Fire Resistance of a Steel Portal Frame	301
11.1.3	Estimation of the Critical Temperature of a Steel Portal Frame	305
11.1.4	Example	308
11.1.5	Fire Protection	309
11.2	Critical Temperature of a Square Pyramid Grid Structure in a Fire ..	309
11.2.1	Parameters of Grid Structures	309
11.2.2	Definition of Parameters	310
11.2.3	Critical Temperature of the Structural Component	312
11.2.4	Critical Temperature of the Grid Structure in Uniform Temperature Field	312
11.2.5	Critical Temperatures of the Grid Structure in a Non-Uniform Temperature Field	314
11.2.6	Conditions for a Grid Structure with no Need of Fire Protection	316
11.3	Continuous Approach for Cable-Net Structural Analysis in a Fire ..	316
11.3.1	Behavior of a Single Cable in a Fire	317
11.3.2	Behavior of the Cable-Net Structure in a Fire	323

11.3.3 Simplified Method for the Critical Temperature of a Cable-Net Structure	327
11.3.4 Critical Temperature of a Cable-Net Structure with Elliptical or Diamond Plan View	329
11.3.5 Critical Temperature of the Cable-Net Structure with Parabolic Plan View	329
References	331
Appendix A: Parameters for Calculating the Smoke Temperature in Large Space Building Fire	333
Appendix B: Stiffness Matrixes of Beam-Column Elements	341
Appendix C: Height of the Flame	343
Appendix D: Critical Temperatures of Composite Beams	345
Appendix E: Critical Temperatures of a Steel Column Subjected to Combined Axial Force and Bending Moment	349
Appendix F: Maximum Fire Power at Which a Grid Structure Does not Need Fire Protection	351
Index	355