

Contents

1	Introduction	1
1.1	Graphene on Paper and in the Lab.	1
1.2	Two Layers: Double the Fun?.	2
1.3	Thesis Outline.	3
	References	5
2	The Tight-Binding Approach and the Resulting Electronic Structure	9
2.1	The Crystal and Reciprocal Lattices.	9
2.2	The Four-Band Tight-Binding Model for π Electrons.	10
2.2.1	Full Momentum Dependence	10
2.2.2	Approximation for Hopping Elements	14
2.2.3	Symmetry-Breaking Asymmetries in the on-Site Energies	16
2.3	The Effective Two-Band Model	18
	References	20
3	Angle-Resolved Photoemission Spectroscopy	23
3.1	ARPES as Quantum Young's Experiment	24
3.2	Monolayer Graphene	27
3.3	Bilayer Graphene.	29
3.3.1	Low-Energy Spectrum: Contribution of the Two Degenerate Bands Only	30
3.3.2	Contribution from the Split Bands.	31
3.3.3	Influence of the Symmetry-Breaking Parameters on the ARPES Spectra.	34
3.3.4	Interference Due to a Finite Interlayer Distance	35
	References	36

4 Magneto-Optical Spectroscopy	39
4.1 Bilayer Graphene in an External Magnetic Field	41
4.1.1 Landau Levels in the Two-Band Model	41
4.1.2 Landau Levels in the Four-Band Model	42
4.1.3 Numerical Treatment of the γ_3 Coupling	47
4.2 Magneto-Optical Selection Rules and the Absorption Spectra	49
4.3 Magneto-Optical Spectroscopy in Charged Bilayer Graphene	52
4.3.1 Landau Level Spectrum in Charged Bilayer Graphene: Self-Consistent Analysis of the Interlayer Asymmetry Gap	52
4.3.2 Tracking a Single Inter-LL Transition: Low-Energy Inter-Landau Level Transitions	56
4.3.3 Magneto-Optical Spectra in Charged Bilayer: High-Energy Inter-Landau Level Transitions	58
References	60
5 Electronic Raman Spectroscopy	63
5.1 General Considerations	64
5.2 The Two-Photon Field and the Electron-Photon Interaction	65
5.3 Scattering Amplitude of the ERS Process	67
5.3.1 Contribution of the Contact Interaction	68
5.3.2 Contribution of the Two-Step Processes	68
5.3.3 The Final Form of the Raman Scattering Amplitude	69
5.4 ERS Spectra in the Absence of the Magnetic Field	70
5.5 ERS Spectra in Quantizing Magnetic Fields	71
References	74
6 Conclusions	77
References	78
Curriculum Vitae	81