Contents

1	Intr	oduction to Shock Wave Physics of Condensed Matter	1
	1.1	Introduction	1
	1.2	General Assumptions	1
	1.3	Brief History of Shock Field in the United States of America	2
	1.4	Practical Value of Shock Field	3
	1.5	Techniques for Producing 1-D Plane Shock Waves	4
	1.6	Dynamic Versus Static Compression	5
	1.7	Select Areas of Shock Wave Research	5
	1.8	What Does a Shock Wave in Condensed Matter Look Like?	6
	Refe	rences	8
2	Plan	ne One-Dimensional Shock Waves	13
	2.1	Definition of a Plane One-Dimensional Shock Wave	13
		2.1.1 A More Practical Definition for a Steady Shock Wave	13
	2.2	Practical Description of U _S , u _p , E, P and Disturbance Velocity	14
	2.3	Conservation Equations for a 1-D Plane Steady Shock Wave	16
	2.4	A Single Shock Wave Defines Only One (P, v) Point on	
		a Hugoniot	18
	2.5	Two Plane Shock Waves 1-D Conservation Relations	20
	2.6	Wave Stability	21
		2.6.1 Necessary Condition for a Shock Wave to Form	22
	Refe	rences	29
3	Imp	edance Matching Technique	31
	3.1	Waves Response to Material Interfaces and Intersection	
		with Other Waves	31
		3.1.1 Practical Uses for Impedance Matching	31
	3.2	Distance-Time (x-t) Wave Propagation Diagrams	31
	3.3		
		$(P = 0, u = 0) \dots $	33
	3.4	Introduction to P-u Curve with Initial State $(P_1, u_1) \dots \dots$	34
	3.5	P-u Curves for Materials with $U_S = A + bu_P \dots$	36

X Contents

	3.6	P-u Diagram for a Shock Crossing a Boundary into a Material
		of Higher Impedance
	3.7	Impedance Matching Treatment of Rarefaction Waves
	3.8	Impedance Matching for a Shock Reaching a Free Surface
	3.9	Impedance Matching for a Flyer Plate Hitting a Stationary
		Plate of the Same Material
	3.10	Disturbance Velocity in a 1-D Eulerian Cartesian
		Coordinate System Fixed in Space
		3.10.1 Symmetric Impact Example
		3.10.2 Disturbance Velocity for General Case
	3.11	Impedance Matching for Four Basic Cases
	3.12	Impedance Matching for Thin Foils
		3.12.1 Summary of the Practical Lessons for Thin Foils
	3.13	Impedance Matching for Multiple Waves Is an
		Approximation
	3.14	Wave-Wave Interaction and Contact Discontinuity
	Refer	ences
1	Evno	rimental Techniques
4	4.1	Selected Experimental Techniques to Measure Shock Wave
	4.1	
	4.3	Parameters
	4.2	Explosive and Flyer Plate Shock Driver Systems
	4.3	Laser Shock Drivers
	4.4	Early Impedance Matching Experiments
	4.5	Shock Velocity Measurements
	4.6	Free Surface Velocity Measurement Using a Streak Camera
	4.7	Electromagnetic Particle Velocity Gauge
	4.8	Laser Velocity Interferometry
	4.9	VISAR
	4.10	ORVIS
	4.11	Fabry-Perot
	4.12	Heterodyne System
	4.13	Optical Windows on Test Samples
	4.14	Quartz Stress Gauge
	4.15	Quartz Gauge Technique for Measuring Low
		Pressure Hugoniot
	4.16	Quartz Gauge Technique for Measuring the Hugoniot
		of a Thin Material
	4.17	Manganin Stress Gauge
	4.18	Other Stress Gauges
	4.19	Proton Radiography for Accurate Density Measurements
		of Shock Wave
	4.20	Issues for Making Temperature Measurements Behind
	20	Shock Waves
	4.21	Error Analysis for Experiments
	4.21	Random Errors
	7.44	Nandon Ellus,

Contents xi

	4.23	Systematic Errors	85
	4.24	Combining Random and Systematic Errors to Get Final Error	86
	4.25	Example of Errors in Measurement of a Cylinders Density	86
	4.26	Error Analysis for a Rotating Mirror Streak Camera	
		Measurement of Free Surface Velocity	88
		4.26.1 Sources of Various Errors	89
		4.26.2 Errors in Trace Angle γ and Wave Tilt Angle ω	90
	Refer	ences	94
5	Ther	modynamics of Shock Waves	101
	5.1	Thermodynamics Review	101
	5.2	Fundamental Thermodynamic Relation	102
	5.3	Equations of State	103
	5.4	Hugoniot Is Steeper than Isentrope from Same Initial State	105
	5.5	Isentrope is Steeper than Isotherm from Same Initial State	106
	5.6	Entropy Along Hugoniot	107
	5.7	Isentrope and Hugoniot Are Same to Second Order in	
		Compression at a Common (P, v) Point	109
	5.8	Differential Equation for Hugoniots	110
	5.9	Temperature at an Isentrope Point with $C_v\gamma/v$ Constant	111
	5.10	Temperature at a Hugoniot Point for $C_v\gamma/v$ Constant	112
	5.11	Calculation of Gruneisen Parameter at $(P = 0, v_o)$ from	
		Thermodynamic Parameters and Sound Speed Values	114
	5.12	Determination of Gruneisen Parameter from Shock Wave	
		Release Velocity Measured at Peak Shock Pressure	115
	5.13	Numerical Calculations of Isentropes and Isotherms from	
		Hugoniot Data for C_v and γ/v Assumed Constant	116
	5.14	Thermodynamic Consistent Surface	118
	5.15	Complete Consistent Equation of State for Materials with	
		a Constant C _v	120
	5.16	Thermodynamic Surface Defined by Isotherm with	
		a Constant C _v	122
	5.17	Isentrope and Isotherm on the Thermodynamic Surface with	
		C_v and γ/v Constant and Principal Hugoniot as the Reference	
	5.10	Curve	130
	5.18	Mie-Gruneisen Equation of State	133
	5.19	Mie-Gruneisen Equation of State with $C_v\gamma/v$ Constant and	
	<i>5</i> 2 0	Principal Hugoniot as the Reference Curve	134
	5.20	Thermodynamics Impose Stringent Constraints on Use of	
		the Gruneisen Equation of State With Hugoniot as	125
	<i>5</i> 01	Thermodynamic Reference Curve	135
	5.21	Calculation of Hugoniot Where Initial Temperature Is Different	126
	£ 00	than Principal Hugoniot's with C _v and γ/v Assumed Constant	136
	5.22	Recentered Hugoniots Using Gruneisen Equation of State with	127
	5 22	C_v and γ/v Constant	137
	5.23	Determination of Volume Dependence of $\partial P/\partial T)_V$ or $\gamma(v)$	139

xii Contents

6	Solid	S	147
	6.1	Compression of Solids	147
	6.2	Hookes Tensor Law for Elastic Isotropic Solids	149
	6.3	Uniaxial Stress	149
	6.4	Hydrostatic Pressure on a Solid	151
	6.5	Uniaxial Strain	151
	6.6	Elastic-Plastic Solids Under 1-D Plane Shock Loading	152
	6.7	Elastic-Plastic 1-D Plane Shock Compression Treatment Using	
		Hooks Law for Isotropic Solids	153
	6.8	Impedance Matching Issues for Elastic-Plastic Material	
		with a Free Surface	157
	6.9	Material Strength at High Stress Hugoniot States	163
	6.10	Porous Materials	164
	6.11	Simple Model for Totally Compacted Porous Material	
		When Strength Can Be Ignored	166
	6.12	Gruneisen EOS for Porous Material with Principal Hugoniot	
		as Reference and γ/v Constant	167
	6.13	Temperature for a Shocked Porous Material with C _v Constant	
		and Pores Are Totally Compacted with Strength Ignored	168
	6.14	Phenomenological P-α Model for Porous Material Not	
		Totally Compacted	170
	6.15	Snowplow Model for Shock Wave Attenuation in	
		Porous Solids	173
	Refer	rences	177
7	Diffe	rential Conservation Equations and Time-Dependent Flow	179
	7.1	Mass, Momentum and Internal Energy Fluxes for 1-D Flow	179
	7.2	Mass Differential Conservation Equation	180
	7.3	Momentum Differential Conservation Equation	182
	7.4	Rayleigh Line Is Compression Path for a Steady Shock Wave	183
	7.5	Energy Differential Conservation Equation	184
	7.6	Summary of Eulerian Differential Conservation Equations	186
	7.7	Rise-Time and Shape of a Steady Shock Wave Due	
		to Viscosity	186
	7.8	Visco-Elastic Properties Represent Behavior of	
		Polymethylmethacrylate (PMMA) Under Shock Loading	189
	7.9	Time-Dependent Material Properties Overview	192
		7.9.1 Elastic–Plastic Solids	192
		7.9.2 Elastic–Plastic Solid that Undergoes a Phase	
		Transition	193
		7.9.3 Initiating High Explosive	195
	7.10	Time and Spatial Scales Affect Dynamic Material Response	196
	7.11	Elastic Wave Stress Decay Described by a Maxwell-Like	
		Material Model	197
	Refer	rences	199

Contents xiii

8		Order Polymorphic and Melting Phase Transitions Under	
	Shock	0	01
	8.1		01
	8.2	General Background of Polymorphism Under Shock	
		1	03
	8.3		03
	8.4		06
		8.4.1 Evidence for Non-equilibrium Behavior in Mixed	
		0	08
			.09
	8.5	Steady Shock Wave Profiles for Shock Compressed	
		•	10
	8.6	Experimental Rise-Time Measurements of the Steady	
		• •	12
	8.7	Permanent Regime Theory for Rise-Time of a Steady	
		Transmitted Shock Wave Front Where the Phase Transition	
		e e	13
	8.8	Time-Dependent Flow for Transmission Shock Waves	
		1	17
	8.9	•	22
	8.10	ı ı	25
	8.11	Fast Shock Induced Phase Transition in KCL with Two	
		1 1	26
	8.12	J 1	28
	8.13	· · · · · · · · · · · · · · · · · · ·	29
	8.14	Solid and Liquid Phase Thermodynamic Surface for	
			32
	8.15	0	34
	8.16	Shock Loading Porous Aluminum Along Metastable Extension	
			36
	8.17	Determination if Fully Compacted Aluminum Can Melt	
		Under Pressure Release Down an Isentrope After Being	
			37
	Refer	rences	38
9	Seco	ndary Ideal High Explosives Non-steady Initiation Process	
			43
	9.1	Explosives	43
	9.2		45
	9.3		47
	9.4	· · · · · · · · · · · · · · · · · · ·	47
	9.5	High Pressure Shock Initiation of Heterogeneous Explosives 2	250
	9.6		50
	9.7	Phenomenological Reactive Flow Reaction Rate Models for	
			52
	9.8		55

xiv Contents

	9.9	Steady 1-D Detonation Shock Waves in	
		Near-Ideal Explosives	259
	9.10	Chapman-Jouget (CJ) Detonation Model for Near	
		Ideal High Explosives	261
		9.10.1 Case 1 Initiation by Thick Driver Plate	262
		9.10.2 Case 2 Initiation by Very Thin Flyer or a Booster	
		HE with Its Initial Surface Free	262
	9.11	CJ Detonation Model with Polytropic Equation of State for	
		Gas Products	264
	9.12	Peak Pressure Induced in Material by Explosive Using	
		CJ Detonation Model	267
	9.13	P-u Curves for Comp B Explosive Products Using Polytropic	
		Gas Equation of State	269
	9.14	Explosive Product Curves from JWL Equation of State	271
	9.15	ZND Detonation Model	274
	9.16	Detonation Spike Pressure Estimates	276
	9.17	Pressure Drop Behind Detonation Spike	277
	9.18	Thermal Initiation of Explosives	278
	9.19	Adiabatic or Instantaneous Volume Thermal Explosion	282
	Refere	ences	285
10	Stood	y Detonation Waves in Right Circular Cylinders	
10		n-ideal Explosives	291
	10.1	Non-ideal Explosives	291
	10.2	Non-ideal Explosive's Evidence of Late-Time	
	10.2	Energy Release	294
	10.3	Summary of Key Detonation Properties Due to Two	_, .
	10.5	Dimensional Flow in Right Circular Cylinders of Explosives	296
	10.4	Detonation Wave Velocity, Curvature and Failure Diameter	_,
	1011	Measurement Techniques	297
	10.5	Thin Foil Velocity Technique for Measuring CJ State	
	10.0	of a Near-Ideal HE	303
	10.6	Navy Impedance Matching Technique for	
		Measuring CJ State	305
		10.6.1 Simple Approximate Solution for Polytropic	
		Parameter G from Navy Technique	307
	10.7	CJ States Defined by Determining JWL Equation of State	
		for Near Ideal HE's	309
	10.8	Orvis Line VISAR Technique with Very Good Temporal	
		Resolution to Measure CJ Reaction Zone Length	
		of a Near-Ideal HE	310
	10.9		316
	10.10	· · · · · · · · · · · · · · · · · · ·	
		Wave Properties	317

Contents xv

10.11	Curved Front Detonations in Right Circular High Explosive Cylinders	318
10.12	Calculated PBXN-111 Detonation Sonic Zone Lengths	510
-	as a Function of Cylinder Diameter	321
10.13	2D Flow Across Curved Shock Front	323
Refere	ences	326
11 Specia	al Topics: Lagrangian Coordinates, Spall, and Radiation	
Induc	ed Shocks	329
11.1	Lagrangian Coordinates	329
11.2	Steady Flow of Two Forward Facing Shock Waves in	
	Eulerian and Lagrangian Coordinates	330
11.3	Conservation Equations for Two Steady Forward Facing	
	Shocks in Lagrangian Coordinates	333
11.4	Relief Wave Speeds	334
11.5	Sound Speed Determined from Symmetric Impact	335
11.6	Lagrangian Differential Conservation Equations	337
11.7	Planar Spall of Materials Under Dynamic Loading	338
11.8	Dynamic Method of Detecting Spalling	341
11.9	Spall Strength of Condensed Matter	343
11.10	Smooth Planar Spall Due to a Fast Reversible	
	Phase Transition	344
11.11	Radiation Induced Shocks	346
Refere	ences	352
Appendix	1: Symbols, Useful Conversion Factors, and Some Basic	
	Equations for Steady Shock Waves	355
Appendix	2: Hugoniots for Some Materials	359
Appendix	3: One-Dimensional Steady Shock Conservation	
	Equations	361
Appendix	4: Impedance Matching Rule and Four Basic Examples	363
Appendix	5: Analytical Impedance Matching for Two Most Common Cases	365
Appendix	6: Thermodynamic Parameter Definitions	
• •	and Relationships	367
Index		371