Contents

1	Amplitude Death, Synchrony, and Chimera States in Delay Coupled Limit Cycle Oscillators				
	Abhijit Sen, Ramana Dodla, George L. Johnston, and Gautam C. Sethia				
	1.1 Introduction	. 1			
	1.2 A Minimal Collective Model				
		_			
	1.3 N-Oscillator Models				
	1.3.1 Global Coupling				
	1.3.2 Nearest Neighbor Coupling				
	1.3.3 Non-Local Coupling				
	1.4 Summary and Perspectives				
	References	41			
2	Delay-Induced Stability: From Oscillators to Networks	45			
_	Fatihcan M. Atay				
	2.1 Introduction	45			
	2.2 A Brief Synopsis of Averaging Theory				
	2.3 Stability by Delayed Feedback				
	2.4 Amplitude Death in Networks of Oscillators				
	2.5 Diffusively Coupled Networks				
	2.6 Discrete-Time Systems				
	2.7 Concluding Remarks				
	References				
	References	. 01			
3	Delay Effects on Output Feedback Control of Dynamical				
	Systems				
	Silviu-Iulian Niculescu, Wim Michiels, Keqin Gu,				
	and Chaouki T. Abdallah				
	3.1 Introduction	. 63			
	3.1.1 Existing Methodologies				
	3.1.2 Problem Formulation and Related Remarks				
	3.1.3 Methodology and Approach				

viii Contents

	3.2	Main Results	57
		3.2.1 Notation	57
		3.2.2 Stabilizability in the Delay Parameter	70
		3.2.3 Controller Design	75
	3.3		76
		3.3.1 Second-Order System	77
			78
		-	30
	3.4		32
	Ref		33
4	Tim	ne-Delayed Feedback Control: From Simple Models to Lasers	
•		Neural Systems	25
		ehard Schöll, Philipp Hövel, Valentin Flunkert,	ررو
		Markus A. Dahlem	
	4.1		25
	4.2	Time-Delayed Feedback Control of Generic Systems	
	4.2	4.2.1 Stabilization of Unstable Steady States	
		•	
		J 1 1	JU
			٠,
		Periodic Orbits	
	4.2	4.2.4 Stabilizing Periodic Orbits Near a Fold Bifurcation	
	4.3	Time-Delayed Control of Optical Systems	22
		4.3.1 Stabilizing Continuous-Wave Laser Emission	
		by Phase-Dependent Coupling	23
		4.3.2 Noise Suppression by Time-Delayed Feedback	
	4.4	Time-Delayed Control of Neuronal Dynamics	
		4.4.1 Model of Two Coupled Neurons	
		4.4.2 Control of Stochastic Synchronization	
		4.4.3 Dynamics of Delay-Coupled Neurons	
		4.4.4 Delayed Self-Feedback and Delayed Coupling	
	Refe	erences	14
5		te Propagation Speeds in Spatially Extended Systems	51
		l Hutt	
	5.1	Introduction	
	5.2	Dynamics in the Absence of Noise	
		5.2.1 A Neural Field Model	
		5.2.2 The Generic Model	
	5.3	Dynamics In The Presence of Noise	
		5.3.1 General Stability Study	58
		5.3.2 Application to a Specific Model	1
	Refe	erences 17	

Contents ix

6				177
	And	ré Long		
	6.1	Introd	uction	177
	6.2		undamental Issue	
	6.3	Linear	SDDEs	180
	6.4	Small	Delay Expansion	181
	6.5	Reduc	tion Techniques	184
		6.5.1	Reducing the Dimensionality	184
		6.5.2	Crossing Time Problems	187
	6.6	Stocha	astic Delayed Neurodynamics	
		6.6.1	Neural Noise and Delays	
		6.6.2	Neural Control	189
		6.6.3	Neural Population Dynamics	189
		6.6.4	Simplified Stochastic Spiking Model with Delay	
	6.7	Conclu	usion	
7	Glo	hal Cor	nvergent Dynamics of Delayed Neural Networks	197
•			and Tianping Chen	
	7.1	Introd	uction	. 197
	7.2		ity of Delayed Neural Networks	
	,	7.2.1	Preliminaries	
		7.2.2	Delayed Hopfield Neural Networks	
		7.2.3	Delayed Cohen-Grossberg Competitive and Cooperative	
			Networks	209
	7.3	Period	licity and Almost Periodicity of Delayed Neural Networks	217
		7.3.1	Delayed Periodic Hopfield Neural Networks	
		7.3.2	Delayed Periodic Cohen-Grossberg Competitive	
		7.5.2	and Cooperative Neural Networks	. 221
		7.3.3	Delayed Almost Periodic Hopfield Neural Networks	
	7.4		ed Neural Network with Discontinuous Activations	
		7.4.1	Preliminaries	
		7.4.2	Stability of Equilibrium	
		7.4.3	Convergence of Periodic and Almost Periodic Orbits	
	7.5		w and Comparison of Literature	252
	Itor	renees		
8	Ctal	.:::4 a-	nd Hopf Bifurcation for a First-Order Delay Differential	
o	Far	muty au iation w	vith Distributed Delay	263
		ian Crau		200
	8.1		uction	263
	8.2		tions and Hopf Bifurcation Theorem	
	8.3		of the Art and Objectives	
	0.5		The Classical Linear Discrete Delay Differential Equation	

x Contents

		8.3.2	Known Results About Stability of Distributed Delay	
	0.4	04-1-11	Differential Equations	. 273
	8.4		ity Analysis and Hopf Bifurcation for a Delay Differential	
	0.5		ion with Distributed Delay	
	8.5		cation: Periodic Oscillations in a Stem Cell Population	
	Refe	erences		295
9	Det	erminis	tic Time-Delayed Traffic Flow Models: A Survey	297
			and Silviu-Iulian Niculescu	
	9.1		uction to Traffic Flow Problem	298
	9.2		fication of Traffic Models	
		9.2.1	Macroscopic Models	
		9.2.2	Microscopic Models	
		9.2.3	Mesoscopic Models	
	9.3		ical and Simulation Studies	
		9.3.1	Experimental Studies	
		9.3.2	Software Development	
	9.4		Delay Effects in Traffic Flow Models	
		9.4.1	What is the Origin of Time Delay?	
		9.4.2	What is the Measure of Time Delay?	
		9.4.3	Development of Time-Delayed Traffic Models	
	9.5		options and Analysis on Mathematical Models	
	9.6		sting Research Topics	
	,,,	9.6.1	Linear Analysis with a Single Delay	313
		9.6.2	Multiple Delays	
		9.6.3	Time-Varying Delays	
		9.6.4	Improved Traffic Stability with Multiple Vehicle Following	
		9.6.5	Multiple Vehicle Following Under Multiple Delays	
		9.6.6	Nonlinear Time-Delayed Traffic Dynamics	
		9.6.7	Optimal Velocity Model with Time Delay and Stochastic	
		<i>7.0.,</i>	Process	. 317
		9.6.8	Effects of Drivers' Memory	
	9.7		usion and Discussion	
		rences		. 319
	MUIC	iciicos		
r	.1			323