1	Intro	oductio	n	I
	1.1	Some	Definitions	3
		1.1.1	Monomers	3
		1.1.2	Oligomers	4
		1.1.3	Polymers	4
	1.2	Chemi	ical Structure and Nomenclature of Macromolecules	6
	1.3	States	of Order in Polymers	11
		1.3.1	Macromolecules in Solution	12
			1.3.1.1 Solvents and Solubility	14
			1.3.1.2 Polyelectrolytes	17
		1.3.2	Macromolecules in the Molten State	18
		1.3.3	Macromolecules in the Solid State	21
			1.3.3.1 Macromolecules in the Elastomeric State	22
			1.3.3.2 Macromolecules in the Amorphous (Glassy)	
			State	22
			1.3.3.3 Macromolecules in the Crystalline State	23
		1.3.4	Liquid-Crystalline Polymers (LCP)	27
	Bibl	iograph	y	30
2	Met	hods a	nd Techniques for Synthesis, Characterization,	
	Pro	cessing	, and Modification of Polymers	33
	2.1	Metho	ods for Synthesis of Polymers	33
		2.1.1	Chain Growth Polymerizations	33
		2.1.2	Step Growth Polymerizations	35
		2.1.3	Modification of Polymers	37
		2.1.4	Polymer Recipes Reference List	37
	2.2	Techn	iques for Manufacturing of Polymers	37
		2.2.1		42
			Particularities in the Preparation of Polymers	
		2.2.2	Particularities in the Preparation of Polymers	48
		2.2.2	•	48 49
		2.2.2	Polyreactions in Bulk	
		2.2.2	Polyreactions in Bulk	49
			Polyreactions in Bulk	49 49
		2.2.3	Polyreactions in Bulk	49 49 50 52 52
		2.2.3	Polyreactions in Bulk	49 49 50 52

	2.2.5	General	Laboratory Techniques for the Preparation	
		of Polyn	ners	57
		2.2.5.1	Safety in the Laboratory	57
		2.2.5.2	Working with Exclusion of Oxygen	
			and Moisture	57
		2.2.5.3	Purification and Storage of Monomers	
		2.2.5.4	Reaction Vessels for Polymerization Reactions	59
		2.2.5.5	Control and Termination of Polymerization	
			Reactions	61
		2.2.5.6	Isolation of Polymers	63
		2.2.5.7	Purification and Drying of Polymers	
2.3	Charae	cterization	of Macromolecules	65
	2.3.1	Determin	nation of Solubility	66
	2.3.2	Methods	for Determination of Polymer Constitution	70
		2.3.2.1	High-Resolution NMR Spectroscopy	70
		2.3.2.2	IR Spectroscopy	74
		2.3.2.3	UV-vis Spectroscopy	
		2.3.2.4	Fluorescence Spectroscopy	
		2.3.2.5	Refractometry	78
		2.3.2.6	Elemental Analysis	79
		2.3.2.7	Composition of Copolymers	
	2.3.3	Determin	nation of Molecular Weight and	
		Molecula	ar-Weight Distribution	80
		2.3.3.1	Classification of the Methods for	
			Molecular-Weight Determination	84
		2.3.3.2	Absolute Methods	85
		2.3.3.3	Relative Methods	96
		2.3.3.4	Determination of Molecular-Weight Distribution	
			by Fractionation	105
	2.3.4	Determin	nation of size distribution of Polymers Dynamic	
		Light Sc	attering (DLS)	109
	2.3.5	-	Characterization in Bulk	
		2.3.5.1	Determination of Density	
		2.3.5.2	Determination of Crystallinity	112
		2.3.5.3	Glass Transition Temperature	112
		2.3.5.4	Softening Point	
		2.3.5.5	Crystallite Melting Point	114
		2.3.5.6	Melt Viscosity (Melt Flow Index)	115
		2.3.5.7	Thermogravimetry	
		2.3.5.8	Differential Scanning Calorimetry (DSC)	117
		2.3.5.9	Small- and Wide-Angle X-Ray Scattering	
			(SAXS and WAXS)	
		2.3.5.10	Phase Contrast Microscopy	121
		2.3.5.11	Polarization Microscopy	122

Contents ix

			2.3.5.12	Scan	ning Electron Microscopy (SEM)	124
			2.3.5.13		ning Transmission Electron Microscopy	
				(STE	M)	125
			2.3.5.14	Trans	smission Electron Microscopy (TEM)	125
			2.3.5.15	Scan	ning Probe Microscopy	126
		2.3.6	Mechani	cal M	easurements	129
			2.3.6.1	Stres	s-Strain Measurements	130
			2.3.6.2	Dyna	mic-Mechanical Measurements	133
			2.3.6.3	Impa	ct Strength and Notched	
				Impa	ct Strength	135
			2.3.6.4	Hard	ness	135
	2.4	Correla	ations of S	Struct	ure and Morphology with the Properties	
		of Poly	ymers			136
		2.4.1	Structure	/Prop	erties Relationships in Homopolymers	137
			2.4.1.1	Corre	elations with Solution Properties	137
			2.4.1.2	Corre	elation with Bulk Properties	137
		2.4.2	Structure	Prop	erties Relationships in Copolymers	141
			2.4.2.1	Statis	stic Copolymers	141
			2.4.2.2	Alter	nating Copolymers	142
			2.4.2.3	Bloc	k Copolymers	142
			2.4.2.4		Copolymers	
		2.4.3			roperties Relationships	
	2.5	Proces			rs	
		2.5.1			n of Polymer Particles	
		2.5.2	Melt Pro		ng of Polymers	
			2.5.2.1	-	aration of Polymer Films from the Melt	
			2.5.2.2		aration of Fibers by Melt-Spinning	
		2.5.3		_	Polymers from Solution	
			2.5.3.1		aration of Films from Solution	
			2.5.3.2		aration of Fibers by Solution Spinning	
		2.5.4			Aqueous Polymer Dispersions	
	Bibl	iograph	у			147
2	0		C 3 4			1.40
3	-				lles by Chain Growth Polymerization	
	3.1	Radica	-	•	rization	
		3.1.1	Polymeri	izatio	n with Peroxo Compounds as Initiators	157
			Example	3.1	Thermal Polymerization of Styrene in Bulk	
					(Effect of Temperature)	158
			Example	3.2	Polymerization of Styrene with Potassium	
			•		Peroxodisulfate in Emulsion	160
			Example	3.3	Polymerization of Vinyl Acetate with	
			P10		Ammonium Peroxodisulfate in Emulsion	160
			Example	3 4	Polymerization of Vinyl Acetate in	
			Example	J. 4	Suspension (Bead Polymerization)	161
					ouspension (beau i orymenzation)	101

	Example 3.5	Polymerization of Methacrylic Acid with	
		Potassium Peroxodisulfate in Aqueous	
		Solution	
3.1.2	-	with Azo Compounds as Initiator	162
	Example 3.6	Bulk Polymerization of Styrene with 2,2′-	
		Azobisisobutyronitrile in a Dilatometer	163
	Example 3.7	Polymerization of Styrene with 2,2'-	
		Azobisisobutyronitrile in Solution	
		(Effect of Monomer Concentration)	165
	Example 3.8	Polymerization of Methyl Methacrylate with	
		2,2'-Azobisisobutyronitrile in Bulk	165
3.1.3	Polymerization	n with Redox Systems as Initiators	166
	Example 3.9	Polymerization of Acrylamide with a	
		Redox System in Aqueous Solution	168
	Example 3.10	Fractionation of Polyacrylamide by Gel	
	•	Permeation Chromatography in Water	168
	Example 3.11	Polymerization of Acrylonitrile with	
	•	a Redox System in Aqueous Solution	
		(Precipitation Polymerization)	169
	Example 3.12	Polymerization of Isoprene with a Redox	
	•	System in Emulsion	171
3.1.4	Polymerization	Using Photolabile Compounds as Initiators	171
	Example 3.13	Photopolymerization of Hexamethylene	
	2	Bisacrylate	172
3.1.5	Polymerization	of Cyclodextrin Host-Guest Complexes	
01210	•	•	173
	Example 3.14a		1,5
	Example 5.1 to	Cyclodextrin Host–Guest Complexes of	
		Butyl Acrylate from Homogeneous	
		Aqueous Solution (Precipitation	
		Polymerization)	174
	Example 3 1/1	Oxidative Polymerization of a Cyclodextrin	1,,
	Example 5.140	Host–Guest Complex of Pyrrole from	
		Homogeneous Aqueous Solution	
		(Conducting Polymer)	175
3.1.6	Controlled Page	dical Polymerization	
3.1.0	Example 3.15a		175
	Example 5.15a	(ARTP) of Methyl Methacrylate in	
			170
	Evenuel- 2 151	Miniemulsion	1/8
	Example 3.15b		
		(RAFT) of Trimethylsilylpropargyl	
		Methacrylate and Subsequent Polymer	120
		ADVIOURS UTICK REACTION	IXII

Contents

3.2	Ionic F	Homopoly	meriza	tion	182
	3.2.1			cation via $C = C$ Bonds	
		3.2.1.1	- Cation	ic Polymerization with Lewis Acids as	
			Initiate	ors	187
		Example	3.16	Cationic Polymerization of Isobutylene with Gaseous BF ₃ at Low Temperatures	100
		Example	3.17	in Bulk	189
		Example	3.18	Low Temperatures	
		2212		α-Methylstyrene in Solution	190
				ic Polymerization with Organometallic	100
			_	ounds as Initiators	190
		Example	3.19		
				α-Methylstyrene with Sodium	
				Naphthalene in Solution ("Living Polymerization")	101
		Evamela	2 20	Preparation of Isotactic and Syndiotactic	191
		Example	3.20	Poly(Methyl Methacrylate) with	
				Butyllithium in Solution	103
		Example	3 21	Stereospecific Polymerization of Isoprene	1/3
		Example	3.21	with Butyllithium in Solution	194
	3.2.2	Ionic Pol	vmeria	zation via C = O Bonds	
	3.2.2	Example	•		1//
		Lxample	5.22	in Solution (Precipitation	
				Polymerization)	
	3.2.3	Ring-Op	ening I	Polymerization	198
		3.2.3.1		Opening Polymerization of Cyclic	
			Ethers	·	199
		Example	3.23	Polymerization of THF with	
				Antimony Pentachloride in Bulk	200
		3.2.3.2		Opening Polymerization	
			-	clic Acetals	200
		Example	3.24	Polymerization of Trioxane with BF ₃ -Etherate as Initiator	202
		3233	Rino-	Opening Polymerization of Cyclic Esters	
		3.2.3.3	-	ones)	
		Example			
				of Dilactide with Cationic Initiators	
				in Solution	204
		Example	3.25b		
		•		Polymerization of ε-Caprolactone in Bulk	206
		3.2.3.4	Ring-	Opening Polymerization of Cyclic Amides	
			_	nms)	206

		Example 3.26	Bulk Polymerization of ε-Caprolactam with Anionic Initiators (Flash Polymerization) 208
		3.2.3.5 Ring-	Opening Polymerization of Oxazolines 208
		Example 3.27	Synthesis of a Linear, N-Acylated Polyethyleneimine Through Cationic Polymerization of 2-Methyl-2-Oxazoline in Bulk
3.3	Metal-	-Catalyzed Polyr	nerization
	3.3.1	Polymerization	with Ziegler-Natta-Catalysts 210
		Example 3.28	Polymerization of Ethylene on a Supported Catalyst in Organic Suspension 213
		Example 3.29	Stereospecific Polymerization of Propylene with Ziegler-Natta-Catalysts in Organic Suspension
		Example 3.30	Stereospecific Polymerization of Styrene with Ziegler-Natta-Catalysts
		Example 3.31	Stereospecific Polymerization of Butadiene with Ziegler-Natta-Catalysts: Preparation of <i>cis</i> -1,4-Polybutadiene 217
	3.3.2	Polymerization	with Metallocene Catalysts 219
		Example 3.32	Metallocene-Catalyzed Polymerization of Propylene to Highly Isotactic Polypropylene in Organic Suspension 220
	3.3.3	Ring-Opening	Metathesis Polymerization (ROMP) 221
		Example 3.33	Poly(1-Pentenylene) by Metathesis Polymerization of Cyclopentene with a Ziegler-Natta-Catalyst in Solution 225
		Example 3.34	ROMP of norborn-5-ene-2-methanol with a Grubbs-Type Initiator in Solution 226
3.4	Copol	ymerization	
	3.4.1	Statistical and	Alternating Copolymerization 227
		Example 3.35	Copolymerization of Styrene with Methyl Methacrylate (Dependence on Type of Initiation)
		Example 3.36	Radical Copolymerization of Styrene with 4-Chlorostyrene (Determination of the Reactivity Ratios)
		Example 3.37	Radical Copolymerization of Styrene with Acrylonitrile (Azeotropic
			Copolymerization)

Contents xiii

	Example 3.38	Radical Copolymerization of Styrene with Maleic Anhydride
		(Alternating Copolymerization) 239
	Example 3.39	Radical Copolymerization of Methacrylic
	Zmampre suss	Acid with <i>n</i> -Butyl Acrylate in Emulsion
		(Continous Monomer Addition) 239
	Example 3.40	Cationic Copolymerization of 1,3,5-
	Zimpie evie	Trioxane with 1,3-Dioxolane (Ring-
		Opening Copolymerization) 240
	Example 3.41	Radical Copolymerization of Styrene with
	r	1,4-Divinylbenzene in Aqueous
		Suspension (Crosslinking
		Copolymerization) 240
	Example 3.42	Copolymerization of Styrene with Methyl
		Acrylate (Internal Plasticization) 241
	Example 3.43	Three-Step Synthesis of Core/Double Shell
	*	Particles of Methyl Methacrylate/Butyl/
		Acrylate/Methyl Methacrylate 242
	Example 3.44	Radical Copolymerization of Butadien
	•	with Styrene in Emulsion 243
	Example 3.45	Radical Copolymerization of Butadiene
		with Acrylonitrile in Emulsion 244
	Example 3.46	Preparation of a Styrene/Butyl Acrylate/
		Methacrylic Acid Terpolymer Dispersion
		(Influence of Emulsifier) 245
3.4.2	Block and Graf	ft Copolymerization 246
	3.4.2.1 Block	Copolymers
	Example 3.47	Preparation of a Butadiene/Styrene
		Diblock Copolymer 249
	Example 3.48	Preparation of a t-Butyl Methacrylate/
		Styrene/t-Butyl Methacrylate (→ Acrylic
		Acid/Styrene/Acrylic Acid) Triblock
		Copolymer
	Example 3.49	Preparation of a Multiblock Copolymer of
		4-Vinylpyridine and Styrene by Anionic
		Polymerization
		Copolymers
	Example 3.50	Graft Copolymerization of Styrene
		on Polyethylene
	Example 3.51	Radical Graft Copolymerization
		of Vinylpyrrolidone onto
D.1.1.1.		Poly(vinylalcohol)
Bibliograph	ıy	

4.1	4.1.1	-	erization (Polycondensation) 259 265
		•	vesters from Hydroxycarboxylic Acids 267
		-	vesters from Diols and Dicarboxylic Acids 267
		Example 4.1	Preparation of a Low-Molecular-
		_	Weight Branched Polyester from a Diol, a
			Triol and a Dicarboxylic Acid by Melt
			Condensation
		Example 4.2	Preparation of a High-Molecular-Weight
			Linear Polyester from a Diol and a
			Dicarboxylic Acid by Condensation in Solution
		Example 4.3	Preparation of a Hyperbranched Polyester by
		Example 4.5	Polycondensation of 4,4-bis(4'-
			hydroxyphenyl)Valeric
			Acid
		4.1.1.3 Poly	vesters from Diols and Dicarboxylic Acid
			ivatives
		Example 4.4	Preparation of Polyester from
			Ethylene Glycol and Dimethyl
			Terephthalate by Melt
		- 1 4 F	Condensation
		Example 4.5	Preparation of a Polycarbonate from 4,4-Isopropylidenediphenol
			(Bisphenol A) and Diphenyl Carbonate by
			Transesterification in the Melt 273
		Example 4.6	Preparation of a Liquid Crystalline
			(LC), Aromatic Main-Chain Polyester by
			Polycondensation in the Melt 275
		Example 4.7	Preparation of a Thermotropic, Main-Chain
			Liquid Crystalline (LC) Polyester by
			Interfacial Polycondensation 276
		Example 4.8	Preparation of Unsaturated Polyesters
	4.1.2	Polyamides .	
		4.1.2.1 Pol	yamides from ω-Aminocarboxylic Acids 284
		Example 4.9	1 1 2
			Polycondensation of ε-Aminocaproic Acid
			in the Melt
			yamides from Diamines and Dicarboxylic
		Acı	ds

Contents

	Example 4.10		Preparation of Polyamide-6,6 from	
			Hexamethylenediammonium	
			Adipate (AH Salt) by Condensation in the	
			Melt	286
	4.1.2.3	Polyar	nides from Diamines and Dicarboxylic Acid	
		Deriva	tives	287
	Example	4.11	Preparation of Polyamide-6,10 from	
	•		Hexamethylenediamine and Sebacoyl	
			Dichloride in Solution and by Interfacial	
			Polycondensation	288
	Example	4.12	Synthesis of a Lyotropic Liquid Crystalline	
	ľ		Aromatic Polyamide from Terephthalic	
			Acid Dichloride and Silylated 2-chloro-	
			1,4-Phenylenediamine by	
			Polycondensation in Solution	289
	Example	4.13	Microencapsulation of a Dyestuff by	
			Interfacial Polycondensation	290
4.1.3	Phenol-F	formale	lehyde Resins	
	4.1.3.1		Catalyzed Phenol-Formaldehyde	
			nsation (Novolaks)	292
	Example		Acid-Catalyzed Phenol-Formaldehyde	
			Condensation	293
	4.1.3.2	Base-0	Catalyzed Phenol-Formaldehyde	
			nsation (Resols)	294
4.1.4	Urea- an		mine-Formaldehyde	
			roducts	294
			Formaldehyde Resins	
			Urea-Formaldehyde	
	2.rumpre	2	Condensation	296
	4142	Melan	nine-Formaldehyde Resins	
	Example		Melamine-Formaldehyde	
			Condensation	297
4.1.5	Polv(Alk	vlene	Sulfide)s	
4.1.6			ther)s	
			Phenylene Ether)s	
			Preparation of Poly(2,6-	001
	Baumpre	, ,,,,	Dimethylphenylene Ether)	302
	4.1.6.2	Aroma	atic Polysulfides [Poly(Arylene Sulfide)s]	
	4.1.6.3		Arylene Ether Sulfone)s	
	Example		Synthesis of Poly(Arylene Ether Sulfone)	
			from Bisphenol A and	
			4,4'-Dichlorodiphenyl Sulfone	304
	4.1.6.4	Polv	Arylene Ether Ketone)s	
		- ~ / (*		

xvi Contents

			Example 4.19	Preparation of a Substituted
				Poly(Ether Ether Ketone) from 4,4-bis
				(4-Hydoxyphenyl)Pentanoic Acid and 4,4'-
				Difluorobenzophenone
		4.1.7	Polymers with	Heterocyclic Rings in the Main Chain 307
			4.1.7.1 Polyin	mides
			Example 4.20	Preparation of a Polyimide from
			-	Pyromellitic Dianhydride and 4,4'-
				Oxydianiline by Polycyclocondensation 309
			4.1.7.2 Poly(Benzimidazole)s
		4.1.8		
			Example 4.21	
			•	Oligosiloxane to a Linear, High-
				Molecular-Weight Polysiloxane with
				Hydroxy End Groups; Curing of the
				Polymer
			Example 4.22	Equilibration of a Silicone Elastomer
			r	to a Silicone Oil with Trimethylsilyl
				End Groups
	4.2	Stepw	ise Addition Po	lymerization (Polyaddition)
		4.2.1		
				ar Polyurethanes
				Preparation of a Linear Polyurethane from
				1,4-Butanediol and Hexamethylene
				Diisocyanate in Solution
			4.2.1.2 Bran	ched and Crosslinked Polyurethanes 316
		4.2.2		
				Preparation of Epoxy Resins from
			Diampio	Bisphenol A and Epichlorohydrin 320
	Ribl	iogranh	v	
	Dioi		.,	
5	Mod	dificatio	on of Macromo	lecular Substances
_	5.1			of Macromolecules
	0.1		Example 5.1	Poly(Vinyl Alcohol) by Transesterification
			Samily 10 con	of Poly(Vinyl Acetate); Reacetylation of
				Poly(Vinyl Alcohol)
			Example 5.2	Preparation of Poly(Vinylbutyral) 332
			Example 5.3	Hydrolysis of a Copolymer of Styrene and
			Zampio 3.3	Maleic Anhydride
			Example 5.4	Preparation of Linear Poly(Ethyleneimine)
			Emmple 3.4	by Hydrolysis of Polyoxazoline 333
			Example 5.5	Acetylation of Cellulose
			Landing J.J	1100t 110tt 01 01 00tt 010t 0

		Example 5.6	Preparation of Sodium	
			Carboxymethylcellulose	. 335
		Example 5.7	Acetylation of the Semiacetal End Groups	
		-	of Polyoxymethylene with Acetic	
			Anhydride	. 335
5.2	Crossl	inking of Macro	omolecular Substances	
		•	Vulcanization of a Butadiene-Styrene	
		•	Copolymer (SBR)	. 337
	5.2.1	Polyelectrolyte	es from Crosslinked Macromolecules	
			Exchanger	
		Example 5.9	•	
		•	Sulfonation of Crosslinked Polystyrene	. 340
		Example 5.10		
		•	Crosslinked Polystyrene	
			by Chloromethylation and Amination	. 341
		5.2.1.2 Supe	rabsorbents	
		Example 5.11	Superabsorbent Polyelectrolyte Based on a	
		-	Crosslinked Acrylic Acid Copolymer	. 342
5.3	Degra	dation of Macro	omolecular Substances	
		Example 5.12	Thermal Depolymerization of	
			Poly(α-Methylstyrene) and of Poly(Methyl	
			Methacrylate)	
		Example 5.13	Thermal Depolymerization	
			of Polyoxymethylene	. 346
		Example 5.14		
			Alcohol) with Periodic Acid	. 347
		Example 5.15	Hydrolytic Degradation of an	
			Aliphatic Polyester	. 348
		Example 5.16	Hydrolytic Degradation of Cellulose and	
			Separation of the Hydrolysis Products by	
			Chromatography	
5.4	Modif	ication of Polyr	mers by Additives	. 349
	5.4.1	Addition of St	abilizers	. 350
		Example 5.17	Suppression of the Thermo-Oxidative	
			Crosslinking of Polyisoprene by Addition	
			of an Antioxidant	. 350
		Example 5.18	• •	
			Dehydrochlorination of Poly(Vinyl	
			Chloride) by Addition of Stabilizers	
	5.4.2		asticizers	. 352
		Example 5.19		
			Polymerization of Styrene in Presence of	
			Paraffin Oil	353

		5.4.3	Addition o	t Fill	ers and Reinforcing Materials	353
			Example 5	.20a	Preparation of a Composite Material from	
					an Unsaturated Polyester Resin and Glass	
					Fibers	355
			Example 5	.20b	Preparation of Conductive Composites	
			•		by Filling Polycarbonate (PC) with	
					Carbon Black (CB)	355
	5.5	Mixtur	es of Polyn	ners (Polymer Blends)	
		5.5.1	•		olymer Blends	
		5.5.2			Polymer Blends	
					rted Precipitation from Solution	
			Example 5		Preparation of Polymer Blends from	
			•		Solution	360
			5.5.2.2 C	Copre	cipitation of Polymer Lattices	
				-	g of Polymer Melts	
			Example 5	-	- · · · · · · · · · · · · · · · · · · ·	
			-		Melt	362
			5.5.2.4 P	olym	erization of Monomers Containing Other	
				•	ved Polymers	364
					Preparation of a Polystyrene/	
					Polybutadiene-Blend (High Impact	
					Polystyrene, HIPS) by Polymerization	
					of Styrene in the Presence of	
					Polybutadiene	366
	5.6	Stretch	ing and Fo	amin	g of Polymers	
			Example 5		Preparation of Foamable Polystyrene and	
			•		of Polystyrene Foam	369
			Example 5	5.25	Preparation of a Urea/Formaldehyde Foam	
		5.6.1	-		Polyurethane Foams	
			Example 5		Preparation of a Flexible	
			r		Polyurethane Foam	372
			Example 5	5.27	Preparation of a Rigid Polyurethane	
					Foam	372
	Bibli	iograph	v			
		О Г.	,			
6	Fun	ctional	Polymers .			375
	6.1	Gels .				377
			Example 6	5.1	Synthesis of Hydrophilic Physically	
			•		Crosslinked Gel-Building Polymer	378
			Example 6		Synthesis of Hydrophilic Chemically	
					Crosslinked Gel-Building Polymer	378
			Example 6		Synthesis of a Thermo-Sensitive Gel	
			Example 0		Junicolo of a filerinio densitive del	570

Contents xix

6.2	Responsive "Smart Polymers"			379
	6.2.1	6.2.1 Polymer Networks with Shape Memory Effect		381
		Example 6.4	Synthesis of a Bicomponent Polymer	
		-	Network Through a Radical Polymerization	
			of Methacrylic Acid 2-Ethoxyethyl Ester	
			and bis(Acrylate)	382
6.3	Polyn	ners with Specia	fic (Opto)Electronic Properties	383
		Example 6.5	Synthesis of Poly{[2-(β-Ethylhexyloxy)-	
			5-Methoxy]-Para-Phenylene Vinylene}	
			("MEH-PPV") Via Gilch Reaction	390
		Example 6.6	Synthesis of Poly[9,9-bis	
			(2-Ethylhexyl)Fluorene] Via	
			Yamamoto Coupling	391
		Example 6.7	Synthesis of Poly(3-Dodecylthiophene)	
			Via Grignard Coupling	393
Bil	bliograpł	ıy		394
ndov				307