

Contents

Part I Introduction

1	Introduction	3
1.1	Book Structure	6

Part II Modeling of Complex Systems for Predictive Control

2	Hybrid Dynamics	11
2.1	General Mathematical Formulation	11
2.1.1	Dynamical System	11
2.1.2	General Hybrid Dynamical System	12
2.1.3	Controlled General Hybrid Dynamical System	13
2.2	Interlacing of the Continuous and the Discrete Dynamics	14
2.2.1	Autonomous Switching	15
2.2.2	Autonomous Jumps	15
2.2.3	Controlled Switching	16
2.2.4	Controlled Jumps	16
2.3	Modeling Contributions for Hybrid Systems	17
2.3.1	Witsenhausen's Model	18
2.4	Modeling of Hybrid Systems for Predictive Control in a Discrete-Time Setting	20
	References	21
3	Piecewise Affine and Equivalent Models	23
3.1	Formulations of Hybrid Systems That Are Equivalent to Piecewise Affine Systems	23
3.1.1	Piecewise Affine Systems	24
3.1.2	Mixed Logical-Dynamical Systems	25
3.1.3	Linear Complementarity Systems	26
3.1.4	Extended Linear Complementarity Systems	27
3.1.5	Max-Min-Plus-Scaling Systems	28

3.1.6	Transformations among Formulations of Models	28
3.2	Usability of Piecewise Affine and Equivalent Models	30
3.3	Limitations of Piecewise Affine and Equivalent Models	30
References		31
4	Hybrid Fuzzy Model	33
4.1	Nonlinearity and Fuzzy Models	33
4.1.1	Takagi-Sugeno Fuzzy Models	33
4.2	Modeling of a Hybrid Fuzzy Model	35
4.2.1	Hierarchy of a Hybrid Fuzzy Model	35
4.2.2	Extension of the Takagi-Sugeno Fuzzy Model Formulation to Nonlinear Hybrid Systems	36
4.2.3	Formulation of a Hybrid Fuzzy Model	38
4.2.4	Generalization of a the Hybrid Fuzzy Model	39
4.3	Identification of a Hybrid Fuzzy Model	40
4.3.1	Fuzzy Clustering	40
4.3.2	Projections of the Fuzzy Clusters into the Input Space of the Hybrid Fuzzy Model	42
4.3.3	Global Linear Model	45
4.3.4	Preparation of the Data for Estimation of the Parameters of the Hybrid Fuzzy Model	45
4.3.5	Estimation of the Parameters of the Hybrid Fuzzy Model by Means of a Modified Least-Squares Method	46
References		47
5	Unsupervised Learning Methods for Identification of Complex Systems	49
5.1	Introduction to Unsupervised Learning Methods	51
5.2	Principal Component Analysis	51
5.2.1	Inverting a Matrix with Collinear Data	55
5.3	Fields of Use of Principal Component Analysis and Regression	60
5.3.1	Structure Identification Using Principal Component Analysis	60
5.3.2	Parameter Estimation Using Principal Component Analysis	61
5.3.3	Case Study: Structure Identification Using of a Second-Order System Using Principal Component Analysis	62
5.3.4	Online Process Supervision	64
5.4	Fuzzy Clustering with Cluster Center Points	75
5.4.1	Fuzzy c-Means Clustering Algorithm	75
5.4.2	Gustafson-Kessel Clustering	84
5.4.3	Clustering Algorithm Based on Fuzzy Maximum Likelihood Estimates	89
5.5	Clustering Algorithm Using Linear Prototypes – A Generalized Clustering Method	91

5.5.1 Fuzzy c-Varieties Clustering Algorithm	93
5.5.2 Clustering Algorithm Based on Fuzzy Ellipsoids	97
References	98

Part III Modeling an Identification of a Batch Reactor

6 Batch Reactor	101
6.1 Structure of the Batch Reactor	101
6.2 Basic Mathematical Model of the Batch Reactor Using Differential Equations	102
6.2.1 The Law of Conservation of Energy for the Core of the Batch Reactor	104
6.2.2 The Law of Conservation of Energy for the Water Jacket of the Batch Reactor	104
Reference	104
7 Modeling and Identification of the Batch Reactor: The PWA Approach	105
7.1 Identification Data	105
7.2 Partitioning of the System	107
7.3 Temperature in the Core of the Batch Reactor	108
7.3.1 Model Structure	108
7.3.2 Model Parameters	109
7.4 Temperature in the Water Jacket of the Batch Reactor	110
7.4.1 PWA Model – Approach 1	110
7.4.2 PWA Model – Approach 2	113
7.4.3 PWA Model – Approach 3	114
7.4.4 PWA Model – Approach 4	120
7.5 Validation	121
7.5.1 Validation Data	122
7.5.2 Experiments	122
7.5.3 Discussion	128
8 Modeling and Identification of the Batch Reactor: The HFM Approach	131
8.1 Identification Data	131
8.2 Partitioning of the System	131
8.3 Temperature in the Core of the Batch Reactor	132
8.4 Temperature in the Water Jacket of the Batch Reactor	132
8.4.1 HFM – Approach 1	133
8.4.2 HFM – Approach 2: Fuzzy Clustering	135
8.5 Validation	138
8.5.1 Validation Data	138
8.5.2 Experiments	139
8.5.3 Discussion	142

Part IV Predictive Control of Complex Systems

9	Introduction to Predictive Control of Complex Systems	147
9.1	Optimal Control	148
9.1.1	Hamilton-Jacobi-Bellman Equation	149
9.1.2	Optimal Control of Linear Systems	150
9.2	Predictive Control as a Simplification of a General Optimal-Control Problem	150
9.3	Use of Discrete-Time Models	151
9.4	Mechanism of the Predictive-Control Algorithms	151
9.5	Cost Function	152
9.6	Computational Complexity of the Predictive-Control Problem	153
9.7	Predictive Control of Complex Systems	154
	References	154
10	Solving Mixed-Integer Optimization Problems	157
10.1	Piecewise Affine or Equivalent Models	157
10.2	Online and Offline Solving of the Optimization Problem	157
10.3	Mechanism of the Predictive-Control Algorithm	158
10.3.1	Polytopes	158
10.3.2	Mixed-Integer Optimization Problems	159
10.4	The Curse of Dimensionality	163
10.5	Case Study: Implementation on the Batch Reactor	164
10.5.1	Mathematical Model of the Batch Reactor	165
10.5.2	Limiting the Set of the Possible Input Vector Values	165
10.5.3	Control	166
10.5.4	Cost Function	166
10.5.5	Discussion	166
	References	167
11	Predictive Control Based on a Reachability Analysis	169
11.1	Tree of Evolution	169
11.1.1	Development of the Tree of Evolution	169
11.1.2	Conditions That Are Checked in Every Node during the Exploration of the Tree of Evolution	171
11.1.3	Conditions That Are Checked in Every Node during the Exploration of the Tree of Evolution after a Condition Is Met	172
11.2	Reachability Analysis	173
11.3	Cost Function	173
11.3.1	Condition for Cost-Function Suitability	174
11.3.2	Cost-Function Form	174
11.4	Computational Complexity	176
11.4.1	Decreasing the Computational Complexity by Applying Reachability Analysis	177

11.4.2	Decreasing the Computational Complexity by Limiting the Number of Possible Input Vectors	177
11.4.3	Decreasing the Computational Complexity by Holding the Inputs through a Number of Time-Steps	178
11.5	Case Study: Implementation on the Batch Reactor	181
11.5.1	Mathematical Model of the Batch Reactor	181
11.5.2	Limiting the Number of Possible Input Vectors	181
11.5.3	Control	182
11.5.4	Cost Function	182
11.5.5	Results – Approach 1	182
11.5.6	Results – Approach 2	184
11.5.7	Comparison between Predictive Control Employing a Hybrid Fuzzy Model and a Hybrid Linear Model	186
11.5.8	Discussion	189
	References	191
12	Predictive Control Based on a Genetic Algorithm	193
12.1	Use of a Genetic Algorithm for Optimization Problems with Discrete Variables	193
12.2	Optimization Mechanism Based on a Genetic Algorithm	194
12.3	Genetic Operators	194
12.3.1	Crossover	195
12.3.2	Mutation	196
12.4	Suboptimality of the Approach	196
12.5	Cost Function	197
12.6	Computational Complexity	197
12.6.1	Decreasing the Computational Complexity by Limiting the Number of Possible Input Vectors	199
12.6.2	Decreasing the Computational Complexity by Holding the Inputs through a Number of Time-Steps	200
12.7	Case Study: Implementation on the Batch Reactor	202
12.7.1	Mathematical Model of the Batch Reactor	202
12.7.2	Limiting the Number of Possible Input Vectors	202
12.7.3	Control	203
12.7.4	Cost Function	204
12.7.5	Results	204
12.7.6	Comparison of Predictive Control Algorithms Based on a Genetic Algorithm, a Reachability Analysis and an Explicit Enumeration	208
12.7.7	Discussion	212
	References	213
13	Self-adaptive Predictive Control with an Online Local-Linear-Model Identification	215
13.1	Time-Varying Dynamical Characteristics	215

13.2	Self-adaptive Predictive Control Mechanism	216
13.2.1	Lienarized Model Formulation	216
13.2.2	Parameter Estimation	217
13.2.3	Predictive Functional Control Algorithm	219
13.3	Case Study: Implementation on the Batch Reactor	224
13.3.1	Modified Mathematical Model of the Batch Reactor	224
13.3.2	Kinetic Model of the Exothermic Chemical Reactions	225
13.3.3	Parameter Estimation	227
13.3.4	Predictive Functional Control Algorithm	229
13.3.5	Results	229
13.3.6	Discussion	232
	References	234
14	Control Using an Inverse Hybrid Fuzzy Model	235
14.1	The Control Scheme	235
14.2	Inverse Hybrid Fuzzy Model	236
14.3	The Feedforward Part of the Control Algorithm	238
14.3.1	Reachability Matrix of the Hybrid Fuzzy Model	238
14.3.2	Adjustment of the Reference Signal	239
14.3.3	Determination of the Discrete Part of the Feedforward-Control Signal	240
14.3.4	Determination of the Continuous Part of the Feedforward-Control Signal	241
14.4	The Feedback Part of the Control Algorithm	243
14.4.1	Linearization of the Hibrid Fuzzy Model	243
14.4.2	H -Step Prediction of the Linearized Model	244
14.4.3	Incremental Model	244
14.4.4	Determination of the Feedback-Control Signal	246
14.5	Case Study: Implementation on the Batch Reactor	248
14.5.1	Mathematical Model of the Batch Reactor	248
14.5.2	Control	248
14.5.3	Results	249
14.5.4	Discussion	250
	References	252
Part V Conclusion		
15	Conclusion	255
A	Model Parameters and Control Parameters	257