Table of Contents

1 Introduction	1
1.1 Contact and Friction Phenomena and their Applications	
1.2 History of Contact Mechanics and the Physics of Friction	
1.3 Structure of the Book	
2 Qualitative Treatment of Contact Problems – Normal Contact without	
Adhesion	9
2.1 Material Properties	
2.2 Simple Contact Problems	13
2.3 Estimation Method for Contacts with a Three-Dimensional, Elastic	
Continuum	16
Problems	20
3 Qualitative Treatment of Adhesive Contacts	25
3.1 Physical Background	
3.2 Calculation of the Adhesive Force between Curved Surfaces	
3.3 Qualitative Estimation of the Adhesive Force between Elastic Bodies.	31
3.4 Influence of Roughness on Adhesion	
3.5 Adhesive Tape	
3.6 Supplementary Information about van der Waals Forces and Surface	
Energies	35
Problems	36
4 Capillary Forces	41
4.1 Surface Tension and Contact Angles	
4.2 Hysteresis of Contact Angles	
4.3 Pressure and the Radius of Curvature	
4.4 Capillary Bridges	46
4.5 Capillary Force between a Rigid Plane and a Rigid Sphere	47
4.6 Liquids on Rough Surfaces	48
4.7 Capillary Forces and Tribology	49
Problems	50
5 Rigorous Treatment of Contact Problems – Hertzian Contact	55
5.1 Deformation of an Elastic Half-Space being Acted upon by Surface	
Forces	56
5.2 Hertzian Contact Theory	59
5.3 Contact between Two Elastic Bodies with Curved Surfaces	
5.4 Contact between a Rigid Cone-Shaped Indenter and an Elastic	
Half-Space	63
5.5 Internal Stresses in Hertzian Contacts	
Problems	

6 Rigorous Treatment of Contact Problems – Adhesive Contact	71
6.1 JKR-Theory	72
Problems	77
7 Contact between Rough Surfaces	81
7.1 Model from Greenwood and Williamson	82
7.2 Plastic Deformation of Asperities	88
7.3 Electrical Contacts	89
7.4 Thermal Contacts	92
7.5 Mechanical Stiffness of Contacts	93
7.6 Seals	93
7.7 Roughness and Adhesion	
Problems	95
8 Tangential Contact Problems	105
8.1 Deformation of an Elastic Half-Space being Acted upon	
by Tangential Forces	106
8.2 Deformation of an Elastic Half-Space being Acted upon	
by a Tangential Stress Distribution	
8.3 Tangential Contact Problems without Slip	
8.4 Tangential Contact Problems Accounting for Slip	
8.5 Absence of Slip for a Rigid Cylindrical Indenter	
Problems	114
9 Rolling Contact	
9.1 Qualitative Discussion of the Processes in a Rolling Contact	
9.2 Stress Distribution in a Stationary Rolling Contact	
Problems	128
10 Coulomb's Law of Friction	
10.1 Introduction	
10.2 Static and Kinetic Friction	
10.3 Angle of Friction	
10.4 Dependence of the Coefficient of Friction on the Contact Time	
10.5 Dependence of the Coefficient of Friction on the Normal Force	
10.6 Dependence of the Coefficient of Friction on Sliding Speed	
10.7 Dependence of the Coefficient of Friction on the Surface Roughness	
10.8 Coulomb's View on the Origin of the Law of Friction	140
10.9 Theory of Bowden and Tabor	
10.10 Dependence of the Coefficient of Friction on Temperature	
Problems	146
11 The Prandtl-Tomlinson Model for Dry Friction	
11.1 Introduction	155
11.2 Basic Properties of the Prandtl-Tomlinson Model	157

1	1.3 Elastic Instability	161
	1.4 Superlubricity	
	1.5 Nanomachines: Concepts for Micro and Nano-Actuators	
	Problems	
12 F	rictionally Induced Vibrations	175
	2.1 Frictional Instabilities at Decreasing Dependence of the Frictional	
	Force on the Velocity	176
	2.2 Instability in a System with Distributed Elasticity	
	2.3 Critical Damping and Optimal Suppression of Squeal	
	2.4 Active Suppression of Squeal	
	2.5 Strength Aspects during Squeal	
	2.6 Dependence of the Stability Criteria on the Stiffness of the System	
	2.7 Sprag-Slip	
	Problems	
13 T	hermal Effects in Contacts	199
	3.1 Introduction	
	3.2 Flash Temperatures in Micro-Contacts	
	3.3 Thermo-Mechanical Instability	
	Problems	
14 L	ubricated Systems	207
1	4.1 Flow between two parallel plates	208
1	4.2 Hydrodynamic Lubrication	209
	4.3 "Viscous Adhesion"	
	4.4 Rheology of Lubricants	
	4.5 Boundary Layer Lubrication	
	4.6 Elastohydrodynamics	
	4.7 Solid Lubricants	
P	Problems	223
15 V	iscoelastic Properties of Elastomers	231
	5.1 Introduction	
1	5.2 Stress-Relaxation	232
1	5.3 Complex, Frequency-Dependent Shear Moduli	234
1	5.4 Properties of Complex Moduli	236
1	5.5 Energy Dissipation in a Viscoelastic Material	237
1	5.6 Measuring Complex Moduli	238
1	5.7 Rheological Models	239
	5.8 A Simple Rheological Model for Rubber ("Standard Model")	
	5.9 Influence of Temperature on Rheological Properties	
	5.10 Master Curves	
	5.11 Prony Series	
р	Problems	250

16	Rubber Friction and Contact Mechanics of Rubber	255
	16.1 Friction between an Elastomer and a Rigid Rough Surface	255
	16.2 Rolling Resistance	261
	16.3 Adhesive Contact with Elastomers	263
	Problems	265
17	Wear	271
	17.1 Introduction	
	17.2 Abrasive Wear	
	17.3 Adhesive Wear	
	17.4 Conditions for Low-Wear Friction	
	17.5 Wear as the Transportation of Material from the Friction Zone	
	17.6 Wear of Elastomers.	
	Problems	
12	Friction Under the Influence of Ultrasonic Vibrations	285
10	18.1 Influence of Ultrasonic Vibrations on Friction from a Macroscopic	
	Point of View.	286
	18.2 Influence of Ultrasonic Vibrations on Friction from a Microscopic	
	Point of View.	291
	18.3 Experimental Investigations of the Force of Static Friction as a	
	Function of the Oscillation Amplitude	293
	18.4 Experimental Investigations of Kinetic Friction as a Function of	
	Oscillation Amplitude	295
	Problems	
19	Numerical Simulation Methods in Friction Physics	301
	19.1 Simulation Methods for Contact and Frictional Problems:	
	An Overview.	302
	19.1.1 Many-Body Systems	
	19.1.2 Finite Element Methods	
	19.1.3 Boundary Element Method.	304
	19.1.4 Particle Methods	
	19.2 Reduction of Contact Problems from Three Dimensions to One	
	Dimension	306
	19.3 Contact in a Macroscopic Tribological System	
	19.4 Reduction Method for a Multi-Contact Problem	
	19.5 Dimension Reduction and Viscoelastic Properties	
	19.6 Representation of Stress in the Reduction Model	
	19.7 The Calculation Procedure in the Framework of the Reduction	5 10
	Method	317
	19.8 Adhesion, Lubrication, Cavitation, and Plastic Deformations in the	217
	Framework of the Reduction Method	319
	Problems	

20 Earthquakes and Friction	323
20.1 Introduction	
20.2 Quantification of Earthquakes	325
20.2.1 Gutenberg-Richter Law	
20.3 Laws of Friction for Rocks	
20.4 Stability during Sliding with Rate- and State-Dependent Friction	331
20.5 Nucleation of Earthquakes and Post-Sliding	
20.6 Foreshocks and Aftershocks	337
20.7 Continuum Mechanics of Block Media and the Structure of Faults	338
20.8 Is it Possible to Predict Earthquakes?	342
Problems	343
Appendix	347
Further Reading	351
Figure Reference	357
Index	359