Contents

Foreword	VII
Acknowledgements	IX
Abstract	XI
Contents	XIII
List of Figures	XIX
List of Tables	XXIII
Abbreviations	XXV
Introduction	1
Introduction to the Topic	1
Context of this Thesis Project	4
General Remarks on this Thesis	7 7
I. General Context and Theories	1I
1.1 The Model Concept	13
I.2 Embedded Systems Development	16
I.2.1 Definition and Context	
I.2.2 Characteristics	
1.3 Software Engineering (SE)	
I.4 Systems Engineering (SysEng)	
I.5 Requirements Engineering and Management	
I.5.1 The Term 'Requirement'	
I.5.2 Phases, Artifacts and Techniques in <i>REM</i>	
I.5.3 Requirements Management	
1.5.4 Models in REM	

	I.5.5 Separation between Requirements and Design	48
	1.5.6 The Role and Nature of Requirement Change	
	I.5.7 Traceability in the Context of Requirements Management	55
	I.5.7.1 Traceability in Different Aspects of Development	
	Activities	57
	I.5.7.2 Traceability as an Issue of Quality	61
	1.5.7.3 The Potential Uses of Traceability	62
	I.5.8 Deficiencies of Today's REM Practices	64
I.6 E	Design in Systems and Software Development	65
	1.6.1 Different Design Phases in SysEng and SE	66
	I.6.1.1 System Design	67
	I.6.1.2 Software Architecture	67
	I.6.1.3 Detailed Design	70
	I.6.2 General Theories about Design	70
	I.6.2.1 Design as Symbolic Information Processing	71
	1.6.2.2 Design as Wicked Problems	84
	1.6.2.3 Design as Situated Action	89
	I.6.2.4 Design as a Language of Patterns	94
	1.6.3 Comparison of General Design Theories	. 103
	1.6.4 Dependency between Design Models and Code	. 105
	I.6.5 Architecture Documentation	. 107
	I.6.6 Design in the Automotive Domain	110
	1.6.6.1 Modeling Methods and Tools Used in Automotive	
	Design	
	1.6.6.2 Integrating other Organizations into a Design	115
1.7	Quality Standards for Safety-Critical Development Processes	116
	1.7.1 SPICE (ISO I5504)	119
	I.7.1.1 The Process Reference Model of SPICE	
	1.7.1.2 The Measurement Framework	
	1.7.1.3 The Process Assessment Model (PAM)	. 122
	1.7.2 Requirements, Design and Traceability in the Context of	
	SPICE	. 124
	I.7.2.I ENG.1: Requirements Elicitation	. 124
	I.7.2.2 ENG.2: System Requirements Analysis	. 126
	1.7.2.3 ENG.3: System Architectural Design	130
	1.7.2.4 ENG.4: Software Requirements Analysis	132
	I.7.2.5 ENG.5: Software Design	133
	1.7.2.6 ENG6: Software Construction	
	I.7.2.7 SUP.10: Change Management	135

0

I.7.3 Traceability in SPICE	.137
1.7.3.1 Intersect: Dangers of Prescriptive Process Models	
I.7.3.2 The Nature of the ENG-Processes, <i>Traceability</i> , and	
its Implications	
1.7.4 Automotive SPICE	
I.7.5 Safety Engineering: IEC 61508, ISO 26262	
I.8 Feedback from Embedded Practice	153
II. Rationale Management and Traceability in Detailed Discussion	159
II.9 Rationale Management in Systems and Software	
Engineering	
11.9.1 Characterization Criteria for Rationale Approaches	
11.9.1.1 Representation	. 162
11.9.1.2 Basic Rationale Processes	
II.9.1.3 Descriptive versus Prescriptive Approaches	
II.9.1.4 Intrusiveness	. 164
11.9.2 Rationale Management Systems (RMS)	
11.9.3 Overview of Different Rationale Approaches	
II.9.3.1 Schemas for Argumentation	
II.9.3.2 Approaches beyond Argumentation	
II.9.3.3 Alternative Categorization	. 175
II.9.4 Why Rationale Management Could not yet Succeed	
in Practice	. 177
II.9.4.1 Cognitive Limitations	
II.9.4.2 Rationale Capture Limitations as Central Challenge	
in Rationale Management	
II.9.4.3 Retrieval Limitations	
II.9.4.4 Usage Limitations	. 186
II.9.4.5 Synopsis of Rationale Limitations	
Concerning Alternative Design Theories	
II.9.5 The Role of Rationale in System and Software Design	. 188
11.10 Requirements Traceability	. 192
II.10.1 Overview	. 192
II.10.2 Traceability and Consistency Gaps between Artifacts	. 194
II.10.3 Impact Analysis and Traceability	. 197
II.10.4 Core Dimensions for Characterization	.201
II 10 4 1 Dumose	

XVI Contents

II.10.4.2 Conceptual Trace Model	204
II.10.4.3 Process	
II.10.4.4 Tools	234
II.10.5 Traceability and its Benefit Problem	
II.10.6 Traceability between Requirements and Design	
II.10.6.1 Theoretic Research Results	245
II.10.6.2 Tool Couplings between REM- and Design	
Tools in Practice	248
II.10.7 Traceability between Requirements, Design and Code	254
II.10.8 Rationale Management and Traceability	257
III. PROVEtech: R2A – A Tool for Dedicated Requirements Traceability	259
III.11 Research Goals	261
III.12 Accompanying Case Study	265
III.13 Closing the Tool Gap	
III.14 Closing the Gap between Requirements and Design	271
III.15 Abstraction Layers and Abstraction Nodes	272
III.16 Models Crossing Tool-Barriers	280
III.16.1 Insertion: Coupling Different REM- and Modeling	
Tools	280
III.16.2 Integrating Several Modeling Tools in a Single Model	. 281
III.17 Basic Support Features of R2A	. 284
III.17.1 Support for Collaborative Design Tasks	. 284
III.17.2 The Notes Mechanism	. 285
III.17.3 Extensibility: XML-Reporting and User Tagging	. 286
III.17.4 Unique Identifier Support for any Item in R2A	. 287
III.17.5 Evolutionary Traceability - Recording History and	
Baselines	. 287
III.17.6 The Properties Dialog	. 2 8 8
III.18 Requirements and Requirements Traceability	
III.18.1 Managing Requirement Sources	. 290
III.18.2 Establishing Requirements Traceability	. 293
III.18.2.1 Traceability Operations in R2A	. 296
III.18.2.2 The Requirement Influence Scope (RIS)	. 299
III.18.2.3 Representing Requirement Contextual Data	. 302
III.18.2.4 The Requirement Dribble Process (RDP)	. 304
III.18.2.5 Overview over Navigation and Handling of	
Requirements Aspects in R2A	311

III.19 Taxon	omy of Requiremental Items31	3
III.20 Suppo	ort for Capturing Decisions31	6
111.20.1	Relation to Approaches of Rationale Management31	9
	Effects on the Traceability Model32	2
111.20.3	Example How to Tame the Development Process Model	
	of SPICE32	4
	Implementation of the Decision Model in R2A32	
111.20.5	Additional Support of the Decision Model for Designers 33	
	III.20.5.1 Patterns	8
	III.20.5.2 Ensuring Adequate Realization of Design and	_
	Decisions	
	III.20.5.3 Support for Architecture Evaluation33	
	rce Allocation as a Special Decision Making Case34	1
111.21.1	Budgeted Resource Constraints as further	
	Requiremental Items34	3
111.21.2	Advantages for Collaboration and Sharing Project	
	Knowledge34	
	III.21.2.1 Within Project Refinement34	5
	III.21.2.2 Communicating Information across	_
	Organizational Boundaries34	
	III.21.2.3 Change Management	
111.01.0	III.21.2.4 Different Views on the Same Problem34	
	Representing Budgeted Resource Constraints in SysML.34	
	Combining both <i>Decision Models</i> 35	
	ging Changes and Consistency35	
III.22.1	Usage of Traces – Managing Requiremental Changes35	
	III.22.1.1 Selective Tracing: Impact Analysis	
	III.22.1.2 Interactive Tracing: The Model Browser35	7
	III.22.1.3 Non-Guided Tracing: Additional Features	_
00 0	for Fast Look-Up35	8
111.22.2	Consistency Maintenance of Requirements, Traceability	_
	and Design35	
	ts of Embedding R2A in a Process Environment36	
	Avoiding Redundancies in Supplier Management36	3
III.23.2	Traceability over Several Artifact Models without	
	Redundancies	5
111.23.3	Decoupled Development of Requirement and Design	
	Artifacts36	8

III.24 Overall Architecture of R2A	370
III.24.1 General Architecture	370
III.24.2 The Meta-Model	372
III.24.3 Further Interfaces	376
IV. Synopsis	379
IV.25 Summary of the Achieved Research Results	379
IV.26 Perspectives for Further Research	385
IV.27 Conclusions	
Bibliography	395
Index	435