Contents

	1.1	Motivation	. 1				
	1.2	Brief Overview of Past Work	2				
	1.3	Outline of Thesis	3				
		1.3.1 Logical Connections Between Chapters					
	Refe	erences					
Pa	rt I	Atomic Physics Theory and Cooling Methods					
2	Ato	m-Field Interactions	9				
_	2.1	Atomic Structure	9				
	2.2	The Density Matrix	11				
	2.3	The Optical Bloch Equations	14				
	2.5	2.3.1 Interaction with the Quantised Field	15				
		2.3.2 Interaction with the Incident Field	15				
	2.4	Polarisability of a Two-Level Atom	17				
	2.5	Energy Balance: Work Done on a Two-Level Atom	21				
	2.6	Forces on a Two-Level Atom	22				
	2.7	The Fluctuation–Dissipation Theorem	24				
	2.8	Beyond Two-Level Atoms	26				
	Refe	erences	31				
2	Two	nning and Cooling Atoms	33				
3	3.1	pping and Cooling Atoms	33				
	3.1	Dipole Traps	34				
	3.3	Optical Molasses	36				
		Magneto-Optical Traps	30				
	3.4	Memory-Based Approach to Cooling in Laser Light:	20				
		The Dipole Force Retarded	38				

Introduction

xiv Contents

	3.5	Cavity	y Fields and Atomic Motion: A Brief Review	
		of Cu	rrent Work	40
		3.5.1	Cavity-Mediated Cooling	40
		3.5.2	Ring Cavity Cooling	41
		3.5.3	Self-Organisation of Atoms Inside Cavities	4
	3.6	Mirro	r-Mediated Cooling	42
		3.6.1	Mathematical Model	44
		3.6.2	A Perturbative Approach to Exploring the Model	45
		3.6.3	Numerical Analysis of Mirror-Mediated Cooling	53
		3.6.4	Beyond Adiabatic Theory	51
		3.6.5	Concluding Remarks	59
		3.6.6	Appendix: A Note on Units	60
	3.7	Explo	iting an Optical Memory in Other Geometries	60
		3.7.1	Lengthening the Time Delay: External	
			Cavity Cooling	61
		3.7.2	Lifting the Sub-Wavelength Dependence:	
			Ring Cavity Cooling	62
		3.7.3	Exploiting Three-Dimensional Electromagnetism	63
	Refe			64
4			fer Matrix Model	71
	4.1	An Ex	stended Scattering Theory	72
		4.1.1	Basic Building Blocks of the Model	72
		4.1.2	General System of a Fixed and a Mobile Scatterer	79
		4.1.3	Atom in Front of a Perfect Mirror	84
		4.1.4	Optical Resonator with Mobile Mirror	86
		4.1.5	Appendix: The Doppler Shift Operator	87
		4.1.6	Appendix: Quantum Correlation Function	
			of the Force Operator	89
		4.1.7	Appendix: Mirror Cooling via the Radiation Pressure	
			Coupling Hamiltonian	91
	4.2		al Solution to the Transfer Matrix Approach	93
		4.2.1	Force Acting on Moving Scatterer	94
		4.2.2	Momentum Diffusion Experienced by Scatterer	95
	4.3		nechanics of a Micromirror Inside a Cavity	99
	4.4	•	1 0	103
		4.4.1		105
		4.4.2		107
		4.4.3		109
		1' /		110
			• •	$\frac{110}{112}$

Contents

5.1 External Cavity Cooling	119 119 123 126 127
5.2.1 Comparison of Cavity Cooling Schemes	119 123 126 127 131
5.2.2 Scaling Properties of Cavity Cooling Forces	123 126 127 131
5.3 Amplified Optomechanics in a Ring Cavity	126 127 131
5.3.1 General Expressions and Equilibrium Behaviour 5.3.2 Numerical Results and Discussion	127
5.3.2 Numerical Results and Discussion	131
References	
	134
6 Three-Dimensional Scattering with an Optical Memory	
6.1 Optical Self-Binding of Rayleigh Particles	
6.2 Mirror-Mediated Cooling in One Dimension	
6.3 Self-Binding: Mirror-Mediated Cooling in Three Dimensions.	
References	141
Part III Experimental Work	
7 Experimental Setup	145
7.1 Vacuum and Laser System	145
7.1.1 Atom Cloud Close to Surface	146
7.1.2 Structured Surface	146
7.1.3 Rapid Changing of Surface	146
7.1.4 Good Optical Access	147
7.1.5 Laser System	
7.2 The A MOT and Multiphoton Imaging	
7.2.1 Introduction and Motivation	
7.2.2 The /1 MOT	
7.2.3 Multi-level Imaging System	
7.2.4 Surface Loading by Magneto-Optic Launching	
References	
8 A Guide for Future Experiments	159
8.1 Overview of Several Different Possibilities	
8.1.1 Trapped Ions	
8.1.2 Neutral Atoms	
8.1.3 Optomechanics: Cantilevers and Micromirrors	
8.1.4 Dielectric Particles	
8.1.5 Dipole Trap Arrays	
8.1.6 Plane Mirror Cooling.	
8.1.7 External Cavity Cooling	
8.1.8 Ring Cavity Cooling	
8.1.9 Concave Mirror Cooling	

xvi Contents

	8.2	Cooling Forces Experienced in Different Geometries		165			
		8.2.1	Longitudinal Mirror-Mediated Cooling	166			
		8.2.2	Transverse Mirror-Mediated Cooling	168			
		8.2.3	Ring Cavity Cooling	168			
		8.2.4	Summary: Orders of Magnitude	169			
	8.3	Coolir	ng Times and Base Temperatures	169			
		8.3.1	One-Dimensional Mirror-Mediated Cooling:				
			Trapped Ion	169			
		8.3.2	External Cavity Cooling: Transmissive Membrane	170			
		8.3.3	Amplified Optomechanics: Neutral Atom	170			
	8.4	Apper	ndix: Electric Fields Inside Dielectrics	171			
	8.5	Apper	ndix: Calculating the Electric Field Inside				
		Hemis	spherical Mirrors	173			
	8.6	Apper	ndix: Force Acting on an Atom Inside				
		an Ar	bitrary Monochromatic Field	175			
	Refe	erences	• • • • • • • • • • • • • • • • • • • •	176			
9	Con	clusion	s and Outlook	179			
	Refe	erences	• • • • • • • • • • • • • • • • • • • •	181			
Αι	ıthor	Biogra	phy	183			
Index							