Contents

I	Intr	oduction	1
	1.1	Motivation	1
	1.2	State of the Art of USJ Characterization	3
		1.2.1 Contacting and/or Destructive Techniques	3
		1.2.2 Non-Contacting and Non-Destructive Techniques	10
	1.3	Outline	16
	Refe	erences	17
2	The	ory of Perturbation of the Reflectance	21
	2.1	Uniform Perturbation of the Complex Refractive Index	25
	2.2	Box-Like Perturbation of the Complex Refractive Index	26
	2.3	Double Box-Like Perturbation of the Complex	
		Refractive Index	28
	2.4	Arbitrary Perturbation of the Complex Refractive Index	31
	2.5	Second-Order Effects	33
		2.5.1 Impact of the Presence of a Native Oxide	33
		2.5.2 Impact of a Lateral Variation in Refractive	
		Index Perturbation	35
	2.6	Summary	36
	Refe	erences	37
3	The	ory of Perturbation of the Refractive Index	39
	3.1	Refractive Index of Electrically Conductive Materials	41
	3.2	Electrooptical Effects	42
		3.2.1 Drude Effect	42
		3.2.2 Carrier-Induced Bandgap Narrowing (BGN) Effect	43
		3.2.3 Burstein Shift or Band-Filling (BF) Effect	47
		3.2.4 Pockels, Kerr and Franz-Keldysh Effects	48

x Contents

	3.3 3.4 Refe	Thermooptical Effects	48 49 50
4	The	ory of Carrier and Heat Transport in Homogeneously	
	Dop	ed Silicon	53
	4.1	Thermodynamic Model	55
		4.1.1 Generalized Ambipolar Diffusion Equation	58
		4.1.2 Heat Equation	62
		4.1.3 Steady-Periodic Model Equations	63
		4.1.4 Summary	76
	4.2	Solutions	78
		4.2.1 One-Dimensional Linear Solution	79
		4.2.2 Three-Dimensional Linear Solution	83
		4.2.3 Three-Dimensional Nonlinear Solution	92
	4.3	Summary	95
	Refe	rences	98
5		ension of the Transport Theory to Ultra-Shallow ed Silicon Layers	101 103
	5.2	Validity of the Assumptions	106
	3.2	5.2.1 Flat Quasi-Fermi Level Approximation	107
		5.2.2 Impact of Doped Layers on Substrate Injection	109
	5.3	Steady-Periodic Model Equations	110
	5.4	Summary	113
		erences	113
	Reit	dences	
6	Asse	essment of the Model	115
	6.1	Homogeneous Doping	118
		6.1.1 Comparison of the Model with Experimental Data	119
	6.2	Box-Like Doping Profile	124
		6.2.1 Comparison of the Model with Experimental Data	126
	6.3	Discussion of the Modeling Error	133
		6.3.1 Modeling Error on R_{dc}	133
		6.3.2 Modeling Error on ΔR_{ac}	134
	6.4	Summary	137
	Refe	erences	138
~		Parties Cale Model A. Coming Parties	1 4 1
7		dication of the Model to Carrier Profiling	141 141
	7.1	Model-Free Determination of Junction Depths	
		7.1.1 Absolute Determination of Junction Depths	142
		I I I RELATIVE DETERMINATION OF HINCHON DENING	144

Contents xi

7.2	Model-Based Profile Characterization Technique	13
	7.2.1 Fundamental Principle of the Technique	1.
	7.2.2 Implementation of the Technique	10
	7.2.3 Discussion of the Results	10
7.3	Summary	1
_		
Re	ferences	1
	nclusions and Recommendations	1′
	nclusions and Recommendations	
Co	nclusions and Recommendations	1′
8 Co 8.1	nclusions and Recommendations. Development of the Model	1′ 1′