

Contents

1	Introduction	1
1.1	The Experimental Observations of 2D Supramolecular Monolayers	3
1.1.1	Melamine	4
1.1.2	PTCDA	6
1.1.3	PTCDI	9
1.1.4	NTCDA and NTCDI	9
1.1.5	Mixed Phases PTCDA/PTCDI-Melamine	11
1.2	Theoretical Issues Related to 2D Supramolecular Monolayers	12
1.3	Experimental Techniques STM and AFM	13
1.3.1	STM	14
1.3.2	AFM Technique	17
	References	18
2	Theoretical Methods	23
2.1	Solving the Schrödinger Equation	23
2.2	The Hartree-Fock Method	25
2.3	Density Functional Theory	27
2.4	Technical Details of DFT Calculations	28
2.4.1	Choice of the Basis Set	29
2.4.2	Pseudopotential Method	30
2.4.3	Periodic Boundary Conditions and k-Point Sampling	31
2.5	Siesta Method	31
2.5.1	Definition of Useful Energies to Analyse Systems Stability	32
2.5.2	Characterisation of the Hydrogen Bonds: “Kebab” Structures	33
2.6	Diffusion Calculations	33
2.7	Van der Waals Implementation in DFT Method	33

2.8	Super-Structure Modelling: A Systematic Method	34
2.9	Modelling of STM Images	35
2.9.1	Tersoff-Hamann Method.	35
2.9.2	Scattering Formalisms	36
2.10	Classical Molecular Dynamics.	37
	References	39
3	Hydrogen-Bonding Templates in the Gas Phase	41
3.1	Melamine	41
3.1.1	Dimer.	41
3.1.2	Trimers	48
3.1.3	Tetramers	50
3.1.4	Comparison with Experimental Data	53
3.2	PTCDA	55
3.2.1	PTCDA Dimers.	55
3.2.2	One-Dimensional Chains Based on the PTCDA Pairs	57
3.2.3	Two-Dimensional Structures Based on the PTCDA Pairs	59
3.2.4	Going Beyond Two Molecules Per Cell	63
3.3	PTCDI	66
3.3.1	PTCDI Dimers	66
3.3.2	One-Dimensional Chains Based on the PTCDI Pairs . .	68
3.3.3	Monolayers Based on the PTCDI Dimers.	68
3.4	NTCDA	74
3.4.1	NTCDA Dimers	74
3.4.2	One-Dimensional Chain Based on the NTCDA Dimers	76
3.4.3	Monolayers Based on NTCDA Dimers.	77
3.5	NTCDI	78
3.5.1	NTCDI Dimers	78
3.6	Mixed PTCDA-Melamine and PTCDI-Melamine	79
3.6.1	Melamine PTCDA/PTCDI Dimers.	79
3.6.2	One-Dimensional Chains and Two-Dimensional Monolayers Based on Melamine-PTCDA and Melamine PTCDI Dimers.	81
3.6.3	Going Beyond Two Molecules Per Unit Cell	83
3.7	Importance of vdW Interaction for Hydrogen Bonding Systems	86
3.8	Conclusions.	88
	References	88

4 Molecules on the Au(111) Surface	91
4.1 Melamine on the Au(111) Surface	91
4.1.1 Adsorption of Melamine on the Au(111) Surface	92
4.1.2 Commensurability of the Melamine Network and the Au(111) Surface.	94
4.1.3 Corrugation of the Surface Potential	96
4.2 PTCDA/PTCDI and NTCDA/NTCDI on the Au(111) Surface	98
4.2.1 Adsorption of PTCDA, PTCDI, NTCDA and NTCDA on the Au(111) Surface	99
4.2.2 Corrugation of the Surface Potential	100
4.3 Importance of vdW Interaction for Stabilisation of the Molecules on the Gold Surface	102
4.3.1 Approximate Method with Sci-Fi: Analysis of Adsorption Energy and Corrugation Potential	102
4.3.2 vdW-DF Method (Quantum Espresso and Siesta) Applied to Molecules on the Au(111) Surface.	103
4.3.3 Effect of vdW-DF Functional in the Electronic Charge Density Difference: PTCDA Case	108
4.4 Conclusions.	110
References	112
5 Influence of Dynamics of Melamine with Au ad-Atom on the Au(111) Surface on Self Assembled Structures: Bright Spots	115
5.1 Diffusion of Au Atoms on the Au(111) Surface and Detachment from a Step Edge.	117
5.2 Gas Phase Calculations: First Attempts.	118
5.3 Interaction of a Melamine with an Au ad-Atom on the Au(111) Surface	119
5.4 Diffusion Calculations of Melamine and “Melamine + Au ad-Atom” Block.	122
5.5 Melamine Clusters and a Au ad-Atom	125
5.6 The Final Stage of Formation of a Melamine Hexagon with a Au ad-Atom	129
5.7 Modelling the STM Images of the Hexagonal Cluster on the Au(111) Surface	133
5.8 Conclusion	135
References	136
6 Modelling of DNA Derivatives and Comparison with Experimental Results	137
6.1 Pairs Based on the DNA Derivatives in the Gas Phase	139
6.2 Pairs Based on the Guanine and Cytosine DNA Derivative Molecules in the Gas Phase	142

6.3	One-Dimensional Structures Based on the DNA Homo-Pairs in the Gas Phase	143
6.4	Gas-Phase Two-Dimensional Structures Based on the DNA Pairs	147
6.5	Interaction with the Au(111) Surface and STM Modelling	151
6.5.1	Single DNA Bases on the Au(111) Surface	151
6.5.2	DNA Base Pairs on the Au(111) Surface	154
6.6	Comparison with Experimental Data	155
6.7	Conclusion	160
	References	160
7	Conclusions	161
	References	165
	Index	167