Contents

Part I Whole-Plant Regulation

1	Oxygen Transport in Waterlogged Plants	3
	Lars H. Wegner	
	1.1 Introduction	4
	1.2 O ₂ Transport in Plants: Some Basic Physics, and Modelling	
	of O ₂ Diffusion	5
	1.3 A Survey of Methods to Study O ₂ Transport and Related	
	Parameters in Higher Plants	7
	1.4 Anatomical Adaptations to Flooding Stress: Barriers	
	to Radial Oxygen Loss	10
	1.5 Anatomical Adaptations to Flooding Stress:	
	Formation of Aerenchyma	11
	1.6 Mechanisms of O ₂ Transport in Plants	13
	1.7 O ₂ Transport in Plants: Ecological Implications	18
	1.8 Open Questions and Directions of Further Research	18
	References	19
2	Waterlogging and Plant Nutrient Uptake	23
	J. Theo M. Elzenga and Hans van Veen	
	2.1 Introduction	23
	2.2 Effects of Hypoxia on Nutrient Uptake	26
	2.2.1 Physiological Effects of Hypoxia Change Root Elongation	
	Rate, k , and Maximal Nutrient Uptake Rate, I_{max}	26
	2.2.2 Waterlogging Leads to Changes in the Availability, C_{li} ,	
	and the Effective Diffusion Coefficient, De, of Some of the	
	Nutrients in the Soil	28
	2.2.3 In Waterlogged Conditions, Some Plant Species Show	
	More Root Hair Development, Longer and Thinner	

ix

x Contents

	Roots and Increased Levels of Infection With Mycorhizal	
	Fungi – Effectively Increasing k	29
	2.2.4 Waterlogging Decrease Evaporation and Bulk	
	Water Flow, V_0	30
	2.2.5 In Response to Waterlogging the Kinetics of Root	
	Transport Systems, $K_{\rm m}$ and $I_{\rm max}$, Can be Modified	31
	2.3 Summary and Concluding Remarks	31
	References	32
3	Strategies for Adaptation to Waterlogging and Hypoxia	
	in Nitrogen Fixing Nodules of Legumes	37
	Daniel M. Roberts, Won Gyu Choi, and Jin Ha Hwang	
	3.1 Introduction: The Oxygen Diffusion Barrier in Nodules	38
	3.1.1 Nodule Morphology and the Gas Diffusion Barrier	38
	3.1.2 Modulation of the Gas Diffusion Barrier	40
	3.1.3 Control of the Gas Diffusion Barrier in Response	
	to Sub-Ambient O ₂ and Flooding	40
	3.1.4 Mechanism of Regulation of the Gas Diffusion Barrier	
	in Response to pO ₂	41
	3.2 Developmental and Morphological Adaptations of	
	Nitrogen-Fixing Nodules to Low Oxygen Stress	43
	3.2.1 Secondary Aerenchyma Formation	43
	3.2.2 The Inner Cortex and Infected Zone	44
	3.2.3 Influence of Adaptive Changes on Nitrogen Fixation	• •
	Under Altered Rhizosphere pO ₂ Conditions	45
	3.3 Strategies of Adaptation: Flood-Tolerant Legumes	15
	and Oxygen Diffusion	46
	3.3.1 Tropical Wetland Legumes	46
	3.3.2 Lotus uliginosus: A Temperate Wetland Legume	49
	3.4 Strategies of Adaptation: Alternate Nodulation Pathways	7)
	for Flooding Tolerant Legumes	50
	3.4.1 Intercellular-Based Mechanism of Nodulation:	50
		50
	The Lateral Root Boundary Pathway	50
		51
	Aquatic Nodulation	
	3.5 Summary and Concluding Remarks	
	References	55
4	Oxygen Transport in the Sapwood of Trees	61
•	Sergio Mugnai and Stefano Mancuso	O1
	4.1 Brief Anatomy of a Woody Stem	62
	4.1 Atmosphere Inside a Stem: Gas Composition	02
	and its Effects on Respiration	62
	4.3 Gas Transport and Diffusion	
	♥ 1 3 (43 1 (40)SER) 400 1 (40) USD 01	• • • • • • • • • • • • • • • • • • • •

Contents

		Radial and Axial Oxygen Transport to Sapwood	
	4.5	Sapwood Respiration	70
		ferences	
Part	t II	Intracellular Signalling	
5	_	Signaling During Anoxia	79
		bert H. Felle	
		Introduction	
	5.2	pH, Signal and Regulator	
		5.2.1 pH as Systemic Signal	82
		5.2.2 The Nature of pH Transmission	83
		5.2.3 What is the Information?	83
	5.3	Anoxic Energy Crisis and pH Regulation	
		5.3.1 The Davis-Roberts-Hypothesis: Aspects of pH Signaling	85
		5.3.2 Cytoplasmic Acidification, ATP and Membrane	
		Potential	86
		5.3.3 Cytoplasmic pH (Change), An Error Signal?	87
	5.4	pH Interactions Between the (Major) Compartments	
		During Anoxia	
		5.4.1 The pH Trans-Tonoplast pH Gradient	88
		5.4.2 Cytoplasm and Apoplast	90
		5.4.3 The Apoplast Under Anoxia	90
	5.5	Anoxia Tolerance and pH	91
		5.5.1 pH as a Stress Signal – Avoidance of Cytoplasmic	
		Acidosis	92
		pH as Signal for Gene Activation	
		pH Signaling and Oxygen Sensing	
	5.8	Conclusions	
	Ref	Perences	95
6	Pro	ogrammed Cell Death and Aerenchyma Formation Under	
	Hy	poxia	99
	Ku	rt V. Fagerstedt	
		Introduction	100
	6.2	Description of Aerenchyma Formation: Induced and	
			102
	6.3	Evidence for PCD During Lysigenous Aerenchyma Formation	103
	6.4	Description of the sequence of events leading to induced	
		lysigenous aerenchyma formation	104
		6.4.1 Stimuli for Lysigenous Aerenchyma Development	
		(Low Oxygen, Cytosolic Free Calcium, Ethylene,	
			105
			110

xii Contents

6.4.3 What Determines the Architecture of	
Aerenchyma? – Targeting and Restricting PCD	112
6.5 Future Prospects	113
References	113
7 Oxygen Deprivation, Metabolic Adaptations	
and Oxidative Stress	119
Olga Blokhina and Kurt V. Fagerstedt	
7.1 Introduction	120
7.2 Anoxia: Metabolic Events Relevant for ROS Formation	121
7.2.1 "Classic" Metabolic Changes Under Oxygen Deprivation	
Related to ROS Formation	121
7.2.2 Changes in Lipid Composition and Role of Free Fatty	
Acids Under Stress	124
7.2.3 Modification of Lipids: LP	125
7.3 ROS and RNS Chemistry Overview and Sources of	
Formation Under Lack of Oxygen	126
7.3.1 Reactive Oxygen Species	126
7.3.2 Reactive Nitrogen Species	
7.3.3 Plant Mitochondria as ROS Producers: Relevance	
for Oxygen Deprivation Stress	129
7.4 O ₂ Fluxes in Tissues and Factors Affecting O ₂ Concentration	
In Vivo	131
7.5 Microarray Experiments in the Study of Hypoxia-Associated	101
Oxidative Stress	132
7.6 Update on Antioxidant Protection	133
7.6.1 Low Molecular Weight Antioxidants	134
7.6.2 Enzymes Participating in Quenching ROS	136
7.7 Concluding Remarks	138
References	139
References	139
Part III Membrane Transporters in Waterlogging Tolerance	
8 Root Water Transport Under Waterlogged Conditions	
and the Roles of Aquaporins	151
Helen Bramley and Steve Tyerman	
8.1 Introduction	151
8.2 Variable Root Hydraulic Conductance (L _r)	152
8.3 Changes in Root Morphology and Anatomy	153
8.3.1 Root Death and Adventitious Roots	153
8.3.2 Barriers to Radial Flow	154
8.3.3 Varying the Root or Root Region Involved in	
Water Uptake	157
8.4 Volatile and Toxic Compounds in Anaerobic Soils	158

Contents xiii

	8.5 Water Permeability of Root Cells and Aquaporins	158
	8.5.1 Plant Aquaporins	159
	8.5.2 Responses at the Cell Level Affecting Water	
	Permeability and Potential Mechanisms	161
	8.5.3 Other Changes Under Oxygen Deficiency that Could	
	Affect Water Transport	169
	8.5.4 Transport of Other Molecules Besides Water	
	Through MIPs Relevant to Flooding	170
	8.6 Signalling	171
	8.7 Conclusion and Future Perspectives	172
	References	173
9	Root Oxygen Deprivation and Leaf Biochemistry in Trees	181
	Laura Arru and Silvia Fornaciari	
	9.1 Introduction	182
	9.2 Root O ₂ Deprivation	183
	9.2.1 Root O ₂ Deprivation: Effects on Leaves	185
	9.3 The Role of ADH	185
	9.4 Carbon Recovery	186
	9.5 Differential mRNA Translation	188
	9.6 Effects on Cell Metabolism	189
	9.7 Conclusions	191
	References	192
10	Membrane Transporters and Waterlogging Tolerance	197
	Jiayin Pang and Sergey Shabala	
	10.1 Introduction	198
	10.2 Waterlogging and Plant Nutrient Acquisition	198
	10.2.1 Root Ion Uptake	198
	10.2.2 Transport Between Roots and Shoots	199
	10.2.3 Ionic Mechanisms Mediating Xylem Loading	200
	10.2.4 Control of Xylem Ion Loading Under Hypoxia	201
	10.3 Oxygen Sensing in Mammalian Systems	201
	10.3.1 Diversity and Functions of Ion Channels as	
	Oxygen Sensors	201
	10.3.2 Mechanisms of Hypoxic Channel Inhibition	203
	10.3.3 The Molecular Mechanisms of Oxygen Sensing in	
	Plant Systems Remain Elusive	203
	10.4 Impact of Anoxia and Hypoxia on Membrane Transport	
	Activity in Plant Cells	204
	10.4.1 Oxygen Deficiency and Cell Energy Balance	204
	10.4.2 H ⁺ and Ca ²⁺ Pumps	204
	10.4.3 Ca ²⁺ -Permeable Channels	205
	10.4.4. K ⁺ -Permeable Channels	206

xiv Contents

	10.5	Secondary Metabolites Toxicity and Membrane	
		Transport Activity in Plant Cells	206
		10.5.1 Waterlogging and Production of Secondary	
		Metabolites	206
		10.5.2 Secondary Metabolite Production and Plant	
		Nutrient Acquisition	207
	10.6	Secondary Metabolites and Activity of Key Membrane	
		Transporters	208
		10.6.1 Pumps	208
		10.6.2 Carriers	209
		10.6.3 Channels	209
	10.7	Breeding for Waterlogging Tolerance by Targeting Key	
	10.7	Membrane Transporters	211
		10.7.1 General Trends in Breeding Plants for	
		Waterlogging Tolerance	211
		10.7.2 Improving Membrane Transporters Efficiency	211
		Under Hypoxic Conditions	211
		10.7.3 Reducing Sensitivity to Toxic Secondary Metabolites	212
	Dofo	rences	213
	Kele	ichces	213
11	Ion '	Fransport in Aquatic Plants	221
11		Babourina and Zed Rengel	221
			221
		Introduction	221
	11.2	Morphological and Physiological Adaptations of	222
	112	Aquatic Plants	
	11.3	Ion Transport	224
		11.3.1 Cation Transport Systems	228
		11.3.2 Anion Transport Systems	230
		Root Versus Leaf Uptake	230
		Molecular Characterisation of Transporter Genes	232
	11.6	The Relevance of Aquatic Plants to Terrestrial Plants	
		in Regards to Waterlogging and Inundation Stresses	233
		Conclusions	233
	Refe	rences	234
Par	t IV	Agronomical and Environmental Aspects	
12	Gen	etic Variability and Determinism of Adaptation	
		ants to Soil Waterlogging	241
		n Parelle, Erwin Dreyer, and Oliver Brendel	
		Introduction	242
		Diversity Among Populations: Adaptation to	
	-	Water-Logged Soils?	246
	12.3	Genetic Control of Traits Related to Hypoxia Tolerance	249

Contents xv

	12.4 Genetic Determinism of Tolerance to Waterlogging and		
	Identification of the Involved Genome Regions	250	
	12.4.1 Methodology of the Detection of QTL for Hypoxia		
	Tolerance: Caution and Strategies	251	
	12.4.2 Major Loci Detected for Hypoxia Tolerance	256	
	12.5 Conclusions	260	
	References	260	
13	Improvement of Plant Waterlogging Tolerance		
	Meixue Zhou		
	13.1 Introduction	267	
	13.2 Genetic Resources of the Tolerance	268	
	13.3 Selection Criteria	271	
	13.4 Genetic Studies on Waterlogging Tolerance	273	
	13.5 Marker-Assisted Selection	275	
	13.5.1 QTL Controlling Waterlogging Tolerance	275	
	13.5.2 Accurate Phenotyping is Crucial in Identifying		
	QTLs for Waterlogging Tolerance	278	
	References	281	
Ind	lev .	287	