

Contents

Part I Theory Fernando Sansò

1	The Forward Modelling of the Gravity Field	3
1.1	Outline of the Chapter	3
1.2	Newton's Gravitation Law	4
1.3	The Newtonian Gravitational Attraction of Bodies	5
1.4	The Gravity Field	14
1.5	Gauss, Poisson, Laplace	16
1.6	Dirichlet, Green	20
1.7	Elements of Geometry of the Gravity Field and Related Definitions	21
1.8	The Laplace Operator in Curvilinear Coordinates	30
1.9	Simple Mathematical Models of the Gravity Field	35
1.10	Anomalous Quantities of the Gravity Field and a More Precise Definition of the Geoid	43
1.11	Summary of Height Systems and Their Relation to the Geodetic Datum	53
1.12	Exercises	57
	Appendix	63
	A.1	63
	A.2	64
	A.3	66
	A.4	68
2	Observables of Physical Geodesy and Their Analytical Representation	73
2.1	Outline of the Chapter	73
2.2	Observables and Observation Equations: Linearization	75
2.3	The Linearized Observation Equations of Physical Geodesy	80

2.4	On the Relation Between Height Anomalies and Geoid Undulations	91
2.5	The Remove–Restore Concept	94
2.6	The Spherical Approximation Procedure	97
2.7	A Review of Observation Equations with Unknown Reference Potential	101
2.8	Exercises	104
	Appendix	105
	A.1	105
	A.2	107
3	Harmonic Calculus and Global Gravity Models	111
3.1	Outline of the Chapter	111
3.2	The Newton Integral Representation of the Anomalous Potential	113
3.3	Legendre Functions	117
3.4	Spherical Harmonics	124
3.5	Downward Continuation and Krarup’s Theorem	135
3.6	Ellipsoidal Harmonics	138
3.7	Global Models as Approximate Solution of Boundary Value Problems	145
3.8	Commission and Omission Errors. Kaula’s Rule	151
3.9	Exercises	161
	Appendix	162
	A.1	162
	A.2	164
	A.3	165
	A.4	167
4	The Local Modelling of the Gravity Field: The Terrain Effects	169
4.1	Outline of the Chapter	169
4.2	High Accuracy and High Resolution Local Gravity Model	170
4.3	The Smoothing Role of Terrain Correction (TC)	174
4.4	From Terrain Correction (TC) to Residual Terrain Correction (RTC)	179
4.5	Strategies for the Implementation of Terrain Effects	185
4.6	Comparisons and Interpretations	191
4.7	An Open Issue	195
4.8	Exercises	197
	Appendix	199
	A.1	199
5	The Local Modelling of the Gravity Field by Collocation	203
5.1	Outline of the Chapter	203
5.2	An Introduction to the Problem	204

5.3	The Principle of Minimum Square Invariant Prediction	
	Error by a Simple Example	206
5.4	On Collocation Theory, or the Wiener-Kolmogorov	
	Principle Applied in Physical Geodesy	212
5.5	The General Collocation Problem	216
5.6	Covariance and Spectral Harmonic Calculus	222
5.7	The Estimate of Global Covariance Functions	228
5.8	The Estimate of Local Covariance Functions	231
5.9	Covariance Parametric Models	237
5.10	The Least Squares Collocation (l.s.c.) Solution	240
5.11	On the Optimal Combination of Global Coefficients and Local Observations	244
5.12	Exercises	251
	Appendix	255
	A.1	255
	A.2	256

Part II Methods and Applications

6	Global Gravitational Models	261
6.1	Outline of the Chapter	261
6.2	Introduction	262
6.2.1	Local and Regional Gravimetric Models	264
6.2.2	Global Versus Local Gravimetric Models: Similarities and Differences	264
6.3	Signal Representation and Data Characteristics	265
6.4	The New Satellite Missions	269
6.5	Beyond the Sensitivity of Satellite Data	274
6.6	State-of-the-Art Global Gravitational Modeling	277
6.6.1	EGM96	279
6.6.2	EGM2008	293
6.7	Data Requirements and Data Availability	304
6.7.1	Elevation Data	304
6.7.2	Terrestrial Gravity Anomaly Data	305
6.7.3	Altimetry-Derived Gravity Anomalies	306
6.7.4	The Merged $5' \times 5'$ Area-Mean Gravity Anomaly File	306
6.8	Use of Global Gravitational Models and of Their By-Products	307
6.9	Temporal Variations	309
6.10	Outlook	309
7	Geoid Determination by 3D Least-Squares Collocation	311
7.1	Outline of the Chapter	311
7.2	Introduction	311

7.3	Theory	312
7.4	The Remove-Restore Method.....	316
7.5	Covariance Function Estimation and Representation.....	319
7.6	Conversion from Geoid Heights to Height Anomalies	324
7.7	LSC Geoid Determination from Residual Data	325
7.8	Conclusion	329
8	Topographic Reductions in Gravity and Geoid Modeling	337
8.1	Outline of the Chapter.....	337
8.2	Introduction.....	338
8.3	Topographic Reductions and Gravity Field Modeling.....	340
8.3.1	The Potential and the Attraction of the Earth's Topography	340
8.3.2	Terrain Reductions for Gravity Densification and Gridding	343
8.3.3	Topographic/Isostatic Effects on Gravity and Airborne Gravity and Gradiometry	353
8.3.4	Terrain Reductions and Physical Heights	356
8.3.5	The Treatment of the Topography in Geoid and Quasi-geoid Determination	357
8.4	Terrain Effects in Geoid and Quasi-geoid Determination	363
8.4.1	Helmhert's Second Method of Condensation.....	363
8.4.2	Rudzki's Inversion Scheme	365
8.4.3	Residual Terrain Model (RTM)	366
8.4.4	Terrain Effects and High-Resolution Global Geopotential Models	369
8.4.5	The Remove-Restore Methodology and the Different Reduction Schemes	371
8.5	Methods for the Numerical Estimation of Direct and Indirect Topographic Effects	374
8.5.1	The Mass Prism Topographic Model and the Numerical Integration Method (NIM)	376
8.5.2	The Fast Fourier Transform (FFT) Method	380
8.6	Numerical Examples	385
8.6.1	Effects of Terrain Reductions on Gravity Anomalies and Geoid Heights	386
8.6.2	Determination and Evaluation of Gravimetric Geoid Models	391
8.7	Summary and Concluding Remarks	398
9	Marine Gravity and Geoid from Satellite Altimetry	401
9.1	Outline of the Chapter.....	402
9.2	Altimetry Data.....	403
9.3	Retracking	405

9.4	Sea Surface Height Observations	407
9.4.1	Mean Sea Surface and Mean Dynamic Topography	410
9.4.2	Remove-Restore for Satellite Altimetry	412
9.4.3	Dynamic Sea Surface Topography	412
9.5	Crossover Adjustment	413
9.6	Data Editing, Data Quality and Error-Budget	418
9.7	Gravity Recovery from Altimetry	421
9.8	Least Squares Collocation for Altimetry	422
9.8.1	Interpolation Using Least Squares Collocation	425
9.9	Deterministic Methods	426
9.10	Fast Spectral Methods for Altimetric Gravity Prediction	428
9.10.1	Fast Fourier Techniques for Altimetric Gravity	429
9.10.2	Filtering	431
9.11	Practical Computation of Global High Resolution Marine Gravity	432
9.11.1	North Sea Example	436
9.12	Accuracy of Present-Day Altimetric marine Gravity Fields	439
9.13	Integrating Marine, Airborne and Satellite Derived Gravity	441
9.13.1	East Greenland Airborne and Altimetric Gravity Example	442
9.14	Altimetric Gravity Research Frontiers	443
9.14.1	ICESat and Cryosat-2	444
9.14.2	Altimeter Range Corrections	445
9.14.3	Ocean Tides	446
9.14.4	Retracking in Coastal and Polar Regions	447
Appendix A	Data Resources	450
A.1	Altimetry Data	450
A.2	Altimetric Gravity Field Resources	450
10	Geoid Determination by FFT Techniques	453
10.1	Outline of the Chapter	453
10.2	Review of Stokes's Integral and Its Evaluation	454
10.2.1	Stokes's Boundary Value Problem	454
10.2.2	Geoid Undulations and Terrain Reductions	455
10.2.3	Practical Evaluation of Stokes's Integral	457
10.2.4	The Need for Spectral Techniques	459
10.3	Geoid Undulations by FFT	460
10.3.1	Planar Approximation of Stokes's Integral	460
10.3.2	Spherical Form of Stokes's Integral	464
10.3.3	Elimination of Edge Effects and Circular Convolution	467
10.4	FFT-Evaluation of Terrain Effects	468
10.4.1	2D Formulas for Terrain Effects	468
10.4.2	Terrain Corrections by 3D FFT	473
10.5	Optimal Spectral Geoid Determination	476
10.5.1	Error Propagation	476

10.6	Other Examples of FFT Evaluation of Geodetic Operators	478
10.6.1	The Vening Meinesz Integral	478
10.6.2	The Analytical Continuation Integrals.....	479
10.6.3	The Inverse Stokes and Inverse Mening Meinesz Formulas	480
10.7	Concluding Remarks	481
Appendix	483
A.1	Basic Definitions	483
A.1.1	Sinusoids	483
A.1.2	Fourier Series	483
A.2	The Continuous Fourier Transform and Its Properties	485
A.2.1	Definition of the Continuous Fourier Transform	485
A.2.2	The Impulse Function	486
A.2.3	The Rectangle and the Sinc Functions.....	488
A.2.4	Interpretation of the Fourier Transform and the Fourier Series	489
A.2.5	Properties of the CFT.....	489
A.2.6	Convolution and Correlation	490
A.3	The Discrete Fourier Transform	493
A.3.1	From the Continuous to the Discrete Fourier Transform: Aliasing and Leakage	493
A.3.2	Discrete Convolution and Correlation: Circular Convolution and Correlation	496
A.3.3	Correlation, Covariance, and Power Spectral Density Functions	498
A.3.4	The DFT in Computers.....	500
A.3.5	The Fast Fourier Transform	502
A.4	The Two-Dimensional Discrete Fourier Transform	503
A.5	Efficient DFT for Real Functions.....	505
A.5.1	DFT of Two Real Functions Via a Single FFT	505
A.5.2	Simultaneous Convolution of Two Real Functions with the Same Function	506
A.6	Use of the Fast Hartley Transform	507
A.6.1	The Discrete Hartley Transform	508
A.6.2	Definition of the 1D Discrete Hartley Transform	508
A.6.3	Definition of the 2D Discrete Hartley Transform	509
A.6.4	Properties of the Discrete Hartley Transform	509
A.7	Relationship Between the DHT and the DFT	514
A.7.1	Computation of the 1D DFT Via the 1D DHT	514
A.7.2	Computation of the 2D DFT Via the 2D DHT	515
A.7.3	Advantages Unique to the FHT	516

11 Combination of Heights	517
11.1 Outline of the Chapter.....	517
11.2 Introduction.....	517
11.3 Why Combine Geoid, Orthometric and Ellipsoidal Height Data?.....	520
11.3.1 Modernizing Regional Vertical Datums	520
11.3.2 Global Vertical Datum.....	523
11.3.3 GNSS-Levelling	523
11.3.4 Refining and Testing Gravimetric Geoid Models	524
11.4 Least-Squares Adjustment Methodology for Combining Heights.....	525
11.5 Application of MINQUE to the Combined Height Adjustment Problem	528
11.6 Role of the Parametric Model	531
11.6.1 Modelling Options.....	534
11.6.2 Semi-automated Assessment Procedure	535
11.6.3 Numerical Example	539
11.7 Remarks.....	543
Part III Advanced Analysis Methods	
Fernando Sansò	
12 Hilbert Spaces and Deterministic Collocation	547
12.1 Outline of the Chapter.....	547
12.2 An Introduction to Hilbert Spaces	548
12.3 Orthogonality, Duality, Bases.....	555
12.4 Hilbert Spaces with Reproducing Kernel	568
12.5 Exercises	583
13 On Potential Theory and HS of Harmonic Functions	591
13.1 Outline of the Chapter.....	591
13.2 Harmonic Functions and Harmonic Polynomials	592
13.3 Spherical Harmonics	603
13.4 Hilbert Spaces of Harmonic Functions and First Theorems of Potential Theory	612
13.5 Green's Function and Krarup's Theorem	627
13.6 Exercises	640
14 A Quick Look to Classical Boundary Value Problems (BVP) Solutions	645
14.1 Outline of the Chapter.....	645
14.2 The Classical Molodensky Approach: A Historical Excursus	645
14.3 The Approximate Solution of Molodensky's Problem by Downward Continuation.....	647
14.4 On the Local Use of Molodensky's Formula.....	652
14.5 The Helmert Approach: A Short Review	657
14.6 Exercises	659

15 The Analysis of Geodetic Boundary Value Problems in Linear form	663
15.1 Outline of the Chapter.....	663
15.2 A Precise Definition of the Two Main BVP's and of Their Solution Spaces	666
15.3 Linearized Molodensky's Problem	672
15.4 The Analysis of the Linearized Fixed Boundary BPV	681
15.5 From Least Squares to Galerkin's Method	683
15.6 Two Geodetic Solutions of Galerkin's System.....	693
15.7 New Data Sets from Spatial Gravity Surveying	701
15.8 Exercises.....	704
References.....	707
Index.....	727