Contents

Pre	face		vii
No	tation		ix
1	Wha	at is surface tension?	1
	1.1	Surface tension and its definition	1
	1.2	Physical origin of the surface tension of liquids	2
	1.3	Temperature dependence of the surface tension	5
	1.4	Surfactants	6
	1.5	The Laplace pressure	6
	1.6	Surface tension of solids	8
	1.7	Values of surface tensions of solids	9
	App	endix 1A. The short-range nature of intermolecular forces	10
	App	endix 1B. The Laplace pressure from simple reasoning	10
	Bull	ets	11
	Refe	erences	12
2	Wet	ting of ideal surfaces	13
	2.1	What is wetting? The spreading parameter	13
	2.2	The Young equation	14
	2.3	Wetting of flat homogeneous curved surfaces	17
	2.4	Line tension	19
	2.5	Disjoining pressure	20
	2.6	Wetting of an ideal surface: influence of absorbed liquid layers and the liquid vapor	22
	2.7	Gravity and wetting of ideal surfaces: a droplet shape and liquid puddles	24
	2.8	The shape of the droplet and the disjoining pressure	27
	2.9	Distortion of droplets by an electric field	29
	2.10	Capillary rise	30
	2.11	The shape of a droplet wetting a fiber	33

	2.12	Wetting and adhesion. The Young–Dupre equation	35
	2.13	Wetting transitions on ideal surfaces	36
	2.14	How the surface tension is measured? 2.14.1 The Du Noüy ring and the Wilhelmy plate methods 2.14.2 The pendant drop method 2.14.3 Maximum bubble pressure method 2.14.4 Dynamic methods of measurement of surface tension	37 37 38 39 40
	2.15	Measurement of surface tension of solids	43
	App	endix 2A. Transversality conditions	44
	App	endix 2B. Zisman plot	45
	Bull	ets	46
	Refe	erences	46
3	Con	tact angle hysteresis	50
	3.1	Contact angle hysteresis: its sources and manifestations	50
	3.2	Contact angle hysteresis on smooth homogeneous substrates	52
	3.3	Strongly and weakly pinning surfaces	53
	3.4	Qualitative characterization of the pinning of the triple line	57
	3.5	The zero eventual contact angle of evaporated droplets and its explanation	58
	3.6	Contact angle hysteresis and line tension	59
	3.7	More physical reasons for the contact angle hysteresis on smooth ideal surfaces	60
	3.8	Contact angle hysteresis on chemically heterogeneous smooth surfaces: the phenomenological approach. Acquaintance with the apparent contact angle	61
	3.9	The phenomenological approach to the hysteresis of the contact angle developed by Vedantam and Panchagnula	62
	3.10	The macroscopic approach to the contact angle hysteresis, the model of Joanny and de Gennes	63 63
		defects	66 66
	3.11	Deformation of the substrate as an additional source of the contact	68

	3.12	How the contact angle hysteresis can be measured	69
	3.13	Roughness of the substrate and the contact angle hysteresis	71
	3.14	Use of contact angles for characterization of solid surfaces	71
	App	endix 3A. A droplet on an inclined plane	73
	Bull	ets	74
	Refe	erences	75
4	Dyn	amics of wetting	78
	4.1	The dynamic contact angle	78
	4.2	The dynamics of wetting: the approach of Voinov	78
	4.3	The dynamic contact angle in a situation of complete wetting	80
	4.4	Dissipation of energy in the vicinity of the triple line	82
	4.5	Dissipation of energy and the microscopic contact angle	83
	4.6	A microscopic approach to the displacement of the triple line	83
	4.7	Spreading of droplets: Tanner's law	84
	4.8	Superspreading	85
	4.9	Dynamics of filling of capillary tubes	85
	4.10	The drag-out problem	87
	4.11	Dynamic wetting of heterogeneous surfaces	88
	Bull	ets	89
	Refe	erences	90
5		ting of rough and chemically heterogeneous surfaces: the Wenzel	
	and	Cassie models	92
	5.1	General remarks	92
	5.2	The Wenzel model	92
	5.3	Wenzel wetting of chemically homogeneous curved rough surfaces	94
	5.4	The Cassie–Baxter wetting model	96
	5.5	The Israelachvili and Gee criticism of the Cassie–Baxter model	97
	5.6	Cassie–Baxter wetting in a situation where a droplet partially sits	98
	57	On air The Cossia Poyter wetting of curved surfaces	
	5.7	The Cassie–Baxter wetting of curved surfaces	
	5.8	Cassie–Baxter impregnating wetting	101
	5.9		103

	5.10	Wetting of gradient surfaces	107
	5.11	The mixed wetting state	108
	5.12	Considering the line tension	109
	App	endix 5A. Alternative derivation of the Young, Cassie, and Wenzel	
	equa	ations	111
		ets	
	Refe	erences	114
6	Sup	erhydrophobicity, superhydrophilicity, and the rose petal effect	
	6.1	Superhydrophobicity	116
	6.2	Superhydrophobicity and the Cassie–Baxter wetting regime	117
	6.3	Wetting of hierarchical reliefs: approach of Herminghaus	119
	6.4	Wetting of hierarchical structures: a simple example	120
	6.5	Superoleophobicity	122
	6.6	The rose petal effect	123
	6.7	Superhydrophilicity	125
	Bull	ets	125
	Refe	erences	126
7	Wet	ting transitions on rough surfaces	129
	7.1	General remarks	129
	7.2	Wetting transitions on rough surfaces: experimental data	129
	7.3	Time-scaling of wetting transitions	131
	7.4	Origin of the barrier separating the Cassie and Wenzel wetting states:	
		the case of hydrophobic surfaces	
		7.4.1 The composite wetting state	132
		7.4.2 Energy barriers and Cassie, Wenzel, and Young contact angles	134
	7.5	Critical pressure necessary for wetting transition	
	7.6	Wetting transitions and de-pinning of the triple line; the dimension	
	,,,	of a wetting transition	138
	7.7		141
	7.8	Wetting transitions on hydrophilic surfaces	142
		7.8.1 Cassie wetting of inherently hydrophilic surfaces: criteria	
		for gas entrapping	142
			143

		7.8.3 Surfaces built of ensembles of balls
	7.9	Mechanisms of wetting transitions: the dynamics
	Bull	ets
	Refe	erences
8	Elec	trowetting and wetting in the presence of external fields 152
	8.1	General remarks
	8.2	Electrowetting
	8.3	Wetting in the presence of external fields: a general case 153
	Bull	ets
	Refe	erences
9	Non	stick droplets 156
	9.1	General remarks
	9.2	Leidenfrost droplets
	9.3	Liquid marbles
	9.4	Nonstick drops bouncing a fluid bath
	Bull	ets
		erences
Inc		169