Contents

Series Editor Preface XVII

Preface XIX

About the Series Editor XXIII

About the Volume Editor XXV

List of Contributors XXVII

Ring-Opening Reactions 32

Part I Fundamentals: Active Species, Mechanisms, Reaction Pathways 1

1	Identification and Roles of the Active Species Generated on Various Photocatalysts 3
	Yoshio Nosaka and Atsuko Y. Nosaka
1.1	Key Species in Photocatalytic Reactions 3
1.2	Trapped Electron and Hole 6
1.3	Superoxide Radical and Hydrogen Peroxide $(O_2^{\bullet-} \text{ and } H_2O_2)$ 7
1.4	Hydroxyl Radical (OH*) 9
1.5	Singlet Molecular Oxygen (¹ O ₂) 12
1.6	Reaction Mechanisms for Bare TiO ₂ 15
1.7	Reaction Mechanisms of Visible-Light-Responsive Photocatalysts 17
1.8	Conclusion 20
	References 21
2	Photocatalytic Reaction Pathways – Effects of Molecular Structure,
	Catalyst, and Wavelength 25
	William S. Jenks
2.1	Introduction 25
2.2	Methods for Pathway Determination 27
2.3	Prototypical Oxidative Reactivity in Photocatalytic Degradations 29
2.3.1	Oxidation of Arenes and the Importance of Adsorption 30
2.3.1.1	Hydroxylation and the Source of Oxygen 30

2.3.1.2

VIII	Contents
------	----------

2.3.1.3	Indicators of SET versus Hydroxyl Chemistry in Aromatic Systems 32
2.3.2	Carboxylic Acids 35
2.3.3	Alcohol Fragmentation and Oxidation 36
2.3.4	Oxidation of Alkyl Substituents 37
2.3.5	Apparent Hydrolysis Reactions 38
2.3.6	Sulfur-Bearing Compounds 39
2.4	Prototypical Reductive Reactivity in Photocatalytic Degradations 39
2.5	The Use of Organic Molecules as Test Probes for Next-Generation Photocatalysts 41
2.6	Modified Catalysts: Wavelength-Dependent Chemistry of Organic Probes 42
2.7	Conclusions 44
,	References 45
	References 45
3	Photocatalytic Mechanisms and Reaction Pathways Drawn from Kinetic and Probe Molecules 53
	Claudio Minero, Valter Maurino, and Davide Vione
3.1	The Photocatalyic Rate 53
3.1.1	Other Kinetic Models 55
3.1.2	Substrate-Mediated Recombination 57
3.1.2	Surface Speciation 60
3.2.1	Different Commercial Catalysts 60
3.2.2	Surface Manipulation 61
3.2.3	Crystal Faces 62
3.2.4	Surface Traps for Holes 64
3.3	Multisite Kinetic Model 65
3.4	Conclusion 68
3.1	References 68
	References 66
	Part II Improving the Photocatalytic Efficacy 73
4	Design and Development of Active Titania and Related
	Photocatalysts 75
	Bunsho Ohtani
4.1	Introduction – a Thermodynamic Aspect of Photocatalysis 75
4.2	Photocatalytic Activity: Reexamination 77
4.3	Design of Active Photocatalysts 78
4.4	A Conventional Kinetics in Photocatalysis: First-Order Kinetics 79
4.5	A Conventional Kinetics in Photocatalysis: Langmuir-Hinshelwood
	Mechanism 80
4.6	Topics and Problems Related to Particle Size of Photocatalysts 82
4.7	Recombination of a Photoexcited Electron and a Positive Hole 85
4.8	Evaluation of Crystallinity as a Property Affecting Photocatalytic Activity 86

4.9	Electron Traps as a Possible Candidate of a Recombination Center 87	
4.10	Donor Levels - a Meaning of n-Type Semiconductor 89	
4.11	Dependence of Photocatalytic Activities on Physical and Structural Properties 90	
4.11.1	Correlation between Physical Properties and Photocatalytic Activities 90	
4.11.2	Statistical Analysis of Correlation between Physical Properties and Photocatalytic Activities – a Trial 92	
4.11.3	Common Features of Titania Particles with Higher Photocatalytic Activity 94	
4.11.4	Highly Active Mesoscopic Anatase Particles of Polyhedral Shape 95	
4.12	Synergetic Effect 96	
4.13	Doping 97	
4.14	Conclusive Remarks 98	
	Acknowledgments 99	
	References 99	
5	Modified Photocatalysts 103	
	Nurit Shaham-Waldmann and Yaron Paz	
5.1	Why Modifying? 103	
5.2	Forms of Modification 104	
5.3	Modified Physicochemical Properties 106	
5.3.1	Crystallinity and Phase Stability 106	
5.3.2	Surface Morphology, Surface Area, and Adsorption 107	
5.3.3	Adsorption of Oxygen 111	
5.3.4	Concentration of Surface OH 111	
5.3.5	Specificity 112	
5.3.5.1	TiO ₂ Surface Overcoating 115	
5.3.5.2	Composites Comprised of TiO ₂ and Metallic Nanoislands 116	
5.3.5.3	Doping with Metal Ions and Oxides 116	
5.3.5.4	Utilizing the "Adsorb and Shuttle" Mechanism to Obtain Specificity 117	
5.3.5.5	Mesoporous Materials 119	
5.3.5.6	Molecular Imprinting 120	
5.3.6	Products' Control 122	
5.3.6.1	Surface Modification by Molecular Imprinting 123	
5.3.6.2	Composites Comprised of TiO ₂ and Metallic Nanoislands 124	
5.3.6.3	Doping with Metal Ions 124	
5.3.6.4	Nonmetallic Composite 125	
5.3.6.5	TiO ₂ Morphology and Crystalline Phase 125	
5.3.7	Reducing Deactivation 125	
5.3.8	Recombination Rates and Charge Separation 126	
5.3.8.1	Structure Modification 127	
5.3.8.2	Composites-Metal Islands 127	
5.3.8.3	Composites Comprising Carbonaceous Materials 128	

١	Contents	
	5.3.8.4	Composites Composed of TiO ₂ and Nonoxide Semiconductors 128
	5.3.8.5	Composites Composed of TiO ₂ and Other Oxides 129
	5.3.8.6	Doping with Metals 131
	5.3.8.7	Doping with Nonmetals 132
	5.3.9	Visible Light Activity 132
	5.3.10	Charging—Discharging 132
	5.3.11	Mass Transfer 133
	5.3.12	Facilitating Photocatalysis in Deaerated Suspensions 134
	-141	Summary 134
		References 134
	6	Immobilization of a Semiconductor Photocatalyst on Solid Supports:
		Methods, Materials, and Applications 145
		Didier Robert, Valérie Keller, and Nicolas Keller
	6.1	Introduction 145
	6.2	Immobilization Techniques 147
	6.3	Supports 152
	6.3.1	Packed-Bed Photocatalytic Materials 153
	6.3.2	Monolithic Photocatalytic Materials 155
	6.3.3	Optical Fibers 164
	6.4	Laboratory and Industrial Applications of Supported
		Photocatalysts 168
	6.5	Conclusion 171
		References 172
	7	Wastewater Treatment Using Highly Functional Immobilized TiO ₂
	•	Thin-Film Photocatalysts 179
		Masaya Matsuoka, Takashi Toyao, Yu Horiuchi, Masato Takeuchi, and
		Masakazu Anpo
	7.1	Introduction 179
	7.2	Application of a Cascade Falling-Film Photoreactor (CFFP) for the
		Remediation of Polluted Water and Air under Solar Light
		Irradiation 180
	7.3	Application of TiO ₂ Thin-Film-Coated Fibers for the Remediation of
		Polluted Water 184
	7.4	Application of TiO ₂ Thin Film for Photofuel Cells (PFC) 186
	7.5	Preparation of Visible-Light-Responsive TiO ₂ Thin Films and Their
		Application to the Remediation of Polluted Water 187
	7.5.1	Visible-Light-Responsive TiO ₂ Thin Films Prepared by Cation or
		Anion Doping 188
	7.5.2	Visible-Light-Responsive TiO ₂ Thin Films Prepared by the Magnetron
		Sputtering Deposition Method 190
	7.6	Conclusions 195
		Peteroness 105

8	Sensitization of Titania Semiconductor: A Promising Strategy to Utiliza Visible Light 199
	Zhaohui Wang, Chuncheng Chen, Wanhong Ma, and Jincai Zhao
8.1	Introduction 199
8.2	Principle of Photosensitization 200
8.3	Dye Sensitization 201
8.3.1	Fundamentals of Dye Sensitization 202
8.3.1.1	Geometry and Electronic Structure of Interface 202
8.3.1.2	Excited-State Redox Properties of Dyes 203
8.3.1.3	Electron Transfer from Dyes to TiO ₂ 205
8.3.2	Application of Dye Sensitization 208
8.3.2.1	Nonregenerative Dye Sensitization 208
8.3.2.2	Regenerative Dye Sensitization 211
8.4	Polymer Sensitization 213
8.4.1	Carbon Nitride Polymer 213
8.4.2	Conducting Polymers 214
8.5	Surface-Complex-Mediated Sensitization 214
8.5.1	Organic Ligand 215
8.5.2	Inorganic Ligand 217
8.6	Solid Semiconductor/Metal Sensitization 218
8.6.1	Small-Band-Gap Semiconductor 219
8.6.1.1	Basic Concepts 219
8.6.1.2	Category in Terms of Charge Transfer Process 219
8.6.2	Plasmonic Metal 222
8.6.2.1	Basic Concepts 222
8.6.2.2	Proposed Mechanisms 224
8.6.2.3	Critical Parameters 225
8.7	Other Strategies to Make Titania Visible Light Active 226
8.7.1	Band Gap Engineering 226
8.7.1.1	Metal Doping 226
8.7.1.2	Nonmetal Doping 227
8.7.1.3	Codoping 227
8.7.2	Structure/Surface Engineering 228
8.8	Conclusions 230
	Acknowledgment 231
	References 231
9	Photoelectrocatalysis for Water Purification 241
	Rossano Amadelli and Luca Samiolo
9.1	Introduction 241
9.2	Photoeffects at Semiconductor Interfaces 242
9.3	Water Depollution at Photoelectrodes 245
9.3.1	Morphology and Microstructure 245
9.3.2	Effect of Applied Potential 247
9.3.3	Effect of pH 247

ХII	Contents	
	9.3.4	Effect of Oxygen 248
	9.3.5	Electrolyte Composition 249
	9.4	Photoelectrode Materials 249
	9.4.1	Titanium Dioxide 249
	9.4.1.1	Cation Doping 250
	9.4.1.2	Nonmetal Doping 250
	9.4.2	Other Semiconductor Photoelectrodes 251
	9.4.2.1	Zinc Oxide and Iron Oxide 251
	9.4.2.2	Tungsten Trioxide 251
	9.4.2.3	Bismuth Vanadate 251
	9.4.3	Coupled Semiconductors 251
	9.4.3.1	n-n Heterojunctions 253
	9.4.3.2	p-n Heterojunctions 254
	9.5	Electrodes Preparation and Reactors 255
	9.6	Conclusions 256
		References 257
		Part III Effects of Photocatalysis on Natural Organic Matter and Bacteria 271
	10	Photocatalysis of Natural Organic Matter in Water: Characterization and Treatment Integration 273 Sanly Liu, May Lim and Rose Amal
	10.1	Introduction 273
	10.2	Monitoring Techniques 274
	10.2.1	Total Organic Carbon 275
	10.2.2	UV-vis Spectroscopy 275
	10.2.3	Fluorescence Spectroscopy 277
	10.2.4	Molecular Size Fractionation 278
	10.2.5	Resin Fractionation 280
	10.2.6	Infrared Spectroscopy 280
	10.3	By-products from the Photocatalytic Oxidation of NOM and its Resultant Disinfection By-Products (DBPs) 281
	10.4	Hybrid Photocatalysis Technologies for the Treatment of NOM 284
	10.5	Conclusions 287
		References 289
	11	Waterborne Escherichia coli Inactivation by TiO₂ Photoassisted
	••	Processes: a Brief Overview 295
		Julián Andrés Rengifo-Herrera, Angela Giovana Rincón, and
		Cesar Pulgarin
	11.1	Introduction 295
	11.1	Physicochemical Aspects Affecting the Photocatalytic <i>E. coli</i>
	11.2	Inactivation 296

Effect of Bulk Physicochemical Parameters 296

11.2.1

1 1.2. 1.1	Effect of TiO ₂ Concentration and Light Intensity 296
11.2.1.2	Simultaneous Presence of Anions and Organic Matter 297
11.2.1.3	pH Influence 298
11.2.1.4	Oxygen Concentration 298
11.2.2	Physicochemical Characteristics of TiO ₂ 299
11.3	Using of N-Doped TiO ₂ in Photocatalytic Inactivation of Waterborne Microorganisms 299
11.4	Biological Aspects 302
11.4.1	Initial Bacterial Concentration 302
11.4.2	Physiological State of Bacteria 302
11.5	Proposed Mechanisms Suggested for Bacteria Abatement by
	Heterogeneous TiO ₂ Photocatalysis 303
11.5.1	Effect of UV-A Light Alone and TiO ₂ in the Dark 303
11.5.2	Cell Inactivation by Irradiated TiO ₂ Nanoparticles 304
11.6	Conclusion 304
	References 305
	Part IV Modeling. Reactors. Pilot plants 311
12	Photocatalytic Treatment of Water: Irradiance Influences 313
	David Ollis
12.1	Introduction 313
12.1.1	Chapter Topics 313
12.1.2	Photon Utilization Efficiency 313
12.2	Reaction Order in Irradiance: Influence of Electron-Hole
	Recombination and the High Irradiance Penalty 314
12.3	Langmuir–Hinshelwood (LH) Kinetic Form: Equilibrated Adsorption 315
12.4	-
12.5	Pseudo-Steady-State Analysis: Nonequilibrated Adsorption 317 Mass Transfer and Diffusion Influences at Steady
12.3	Conditions 321
12.6	Controlled Periodic Illumination: Attempt to Beat
	Recombination 323
12.7	Solar-Driven Photocatalysis: Nearly Constant nUV Irradiance 324
12.8	Mechanism of Hydroxyl Radical Attack: Same Irradiance
	Dependence 326
12.9	Simultaneous Homogeneous and Heterogeneous
	Photochemistry 327
12.10	Dye-Photosensitized Auto-Oxidation 328
12.11	Interplay between Fluid Residence Times and Irradiance
	Profiles 329
12.11.1	Batch Reactors 329
12.11.2	Flow Reactors 329
12.12	Quantum Yield, Photonic Efficiency, and Electrical Energy per
	Order 331

XIV Contents	·	
----------------	---	--

12.13	Conclusions 332
	References 332
13	A Methodology for Modeling Slurry Photocatalytic Reactors for Degradation of an Organic Pollutant in Water 335
	Orlando M. Alfano, Alberto E. Cassano, Rodolfo J. Brandi, and
	Martia L. Satuf
13.1	Introduction and Scope 335
13.2	Evaluation of the Optical Properties of Aqueous TiO ₂
	Suspensions 337
13.2.1	Spectrophotometric Measurements of TiO ₂ Suspensions 338
13.2.2	Radiation Field in the Spectrophotometer Sample Cell 339
13.2.3	Parameter Estimation 341
13.3	Radiation Model 342
13.3.1	Experimental Set Up and Procedure 343
13.3.2	Radiation Field Inside the Photoreactor 344
13.4	Quantum Efficiencies of 4-Chlorophenol Photocatalytic
12.41	Degradation 346
13.4.1	Calculation of the Quantum Efficiency 346
13.4.2	Experimental Results 347
13.5	Kinetic Modeling of the Pollutant Photocatalytic Degradation 348
13.5.1 13.5.2	Mass Balances 348 Kinetic Model 349
13.5.2 13.5.3	
13.5.5	Kinetic Parameters Estimation 350
13.0	Bench-Scale Slurry Photocatalytic Reactor for Degradation of 4-Chlorophenol 352
13.6.1	Experiments 352
13.6.2	Reactor Model 352
13.6.2.1	
13.6.2.2	
13.6.2.3	
13.6.3	Results 355
13.7	Conclusions 356
	Acknowledgments 357
	References 357
14	Design and Optimization of Photocatalytic Water Purification
	Reactors 361
	Tsuyoshi Ochiai and Akira Fujishima
14.1	Introduction 361
14.1.1	Market Transition of Industries Related to Photocatalysis 361
14.1.2	Historical Overview 361
14.2	Catalyst Immobilization Strategy 363
14.2.1	Aqueous Suspension 363
14.2.2	Immobilization of TiO ₂ Particles onto Solid Supports 365

14.3	Synergistic Effects of Photocatalysis and Other Methods 366		
14.3.1	Deposition of Metallic Nanoparticles onto TiO ₂ Surface for		
	Disinfection 366		
14.3.2	Combination with Advanced Oxidation Processes (AOPs) 367		
14.4	Effective Design of Photocatalytic Reactor System 369		
14.4.1	Two Main Strategies for the Effective Reactors 369		
14.4.2	Design of Total System 371		
14.5	Future Directions and Concluding Remarks 372		
	Acknowledgments 373		
	References 373		
15	Solar Photocatalytic Pilot Plants: Commercially Available Reactors 377		
	Sixto Malato, Pilar Fernández-Ibáñez, Maneil Ignacio Maldonado,		
	Isabel Oller, and Maria Inmaculada Polo-López		
15.1	Introduction 377		
15.2	Compound Parabolic Concentrators 379		
15.3	Technical Issues: Reflective Surface and Photoreactor 382		
15.4	Suspended or Supported Photocatalyst 386		
15.5	Solar Photocatalytic Treatment Plants 388		
15.6	Specific Issues Related with Solar Photocatalytic Disinfection 390		
15.7	Conclusions 394		
	Acknowledgments 395		
	References 395		

Index 399