Contents

Preface to the First Edition XV
Preface to the Second Edition XVIII
Acknowledgments XIX
Prologue XXI

	_	_	
1	Introduc	tion	1

- 1.1 What Is Luminescence? 1
- 1.2 A Brief History of Fluorescence and Phosphorescence 2
 - 1.2.1 Early Observations 3
 - 1.2.2 On the Distinction between Fluorescence and Phosphorescence: Decay Time Measurements 10
 - 1.2.3 The Perrin-Jablonski Diagram _12
 - 1.2.4 Fluorescence Polarization 14
 - 1.2.5 Resonance Energy Transfer 16
 - 1.2.6 Early Applications of Fluorescence 17
- 1.3 Photoluminescence of Organic and Inorganic Species: Fluorescence or Phosphorescence? 19
- 1.4 Various De-Excitation Processes of Excited Molecules 20
- 1.5 Fluorescent Probes, Indicators, Labels, and Tracers 21
- 1.6 Ultimate Temporal and Spatial Resolution: Femtoseconds, Femtoliters, Femtomoles, and Single-Molecule Detection 23

General Bibliography: Monographs and Books 25

Part I Principles 31

- 2 Absorption of Ultraviolet, Visible, and Near-Infrared Radiation 33
 - 2.1 Electronic Transitions 33
 - 2.2 Transition Probabilities: The Beer–Lambert Law, Oscillator Strength 39
 - 2.3 Selection Rules 46
 - 2.4 The Franck-Condon Principle 47

3

	Multij iograpl	photon Absorption and Harmonic Generation 49 ny 51
Cha	racteris	tics of Fluorescence Emission 53
		tive and Nonradiative Transitions between Electronic States 53
		Internal Conversion 56
		Fluorescence 56
		Intersystem Crossing and Subsequent Processes 57
		3.1.3.1 Intersystem Crossing 58
		3.1.3.2 Phosphorescence versus Nonradiative
		De-Excitation 60
		3.1.3.3 Delayed Fluorescence 60
		3.1.3.4 Triplet–Triplet Transitions 61
3.2	Lifetir	nes and Quantum Yields 61
		Excited-State Lifetimes 61
	3.2.2	Quantum Yields 64
	3.2.3	Effect of Temperature 66
3.3		sion and Excitation Spectra 67
	3.3.1	Steady-State Fluorescence Intensity 67
	3.3.2	Emission Spectra 68
		Excitation Spectra 71
	3.3.4	Stokes Shift 72
Bibl	iograpl	ny <i>7</i> 4
Stru	ıctural I	Effects on Fluorescence Emission 75
		s of the Molecular Structure of Organic Molecules on
		Fluorescence 75
		Extent of the π -Electron System: Nature of the Lowest-Lying
		Transition 75
	4.1.2	Substituted Aromatic Hydrocarbons 77
		4.1.2.1 Internal Heavy Atom Effect 77
		4.1.2.2 Electron-Donating Substituents: -OH, -OR, -NH ₂ ,
		-NHR, -NR ₂ 78
		4.1.2.3 Electron-Withdrawing Substituents: Carbonyl and
		Nitro Compounds 78
		4.1.2.4 Sulfonates 79
	4.1.3	Heterocyclic Compounds 80
		4.1.3.1 Compounds with Heteronitrogen Atoms 80
		4.1.3.2 Coumarins 81
		4.1.3.3 Xanthenic Dyes 82
		4.1.3.4 Oxazines 84
		4.1.3.5 Cyanines 85
		4.1.3.6 BODIPY Fluorophores 86

4.1.4 Compounds Undergoing Photoinduced ICT and

Internal Rotation 87

4.2 Fluorescence of Conjugated Polymers (CPs)	4.2	Fluorescence of	Conjugated	Polymers ((CPs)	92
---	-----	-----------------	------------	------------	-------	----

- 4.3 Luminescence of Carbon Nanostructures: Fullerenes, Nanotubes, and Carbon Dots 93
- 4.4 Luminescence of Metal Compounds, Metal Complexes, and Metal Clusters 96
- 4.5 Luminescence of Semiconductor Nanocrystals (Quantum Dots and Ouantum Rods) 103

Bibliography 105

Environmental Effects on Fluorescence Emission 109

- 5.1 Homogeneous and Inhomogeneous Band Broadening-Red-Edge Effects 109
- 5.2 General Considerations on Solvent Effects 110
- 5.3 Solvent Relaxation Subsequent to Photoinduced Charge Transfer (PCT) 112
- 5.4 Theory of Solvatochromic Shifts 117
- 5.5 Effects of Specific Interactions 119
 - 5.5.1 Effects of Hydrogen Bonding on Absorption and Fluorescence Spectra 119
 - 5.5.2 Examples of Effects of Specific Interactions 120
 - 5.5.3 Polarity-Induced Inversion of $n-\pi^*$ and $\pi-\pi^*$ States 123
- 5.6 Empirical Scales of Solvent Polarity 124
 - 5.6.1 Scales Based on Solvatochromic Shifts 124
 - 5.6.1.1 Single-Parameter Approach 124
 - 5.6.1.2 Multiparameter Approach 126
 - 5.6.2 Scale Based on Polarity-Induced Changes in Vibronic Bands (Pv Scale)
- 5.7 Viscosity Effects 129
 - 5.7.1 What is Viscosity? Significance at a Microscopic Level ~129
 - 5.7.2 Viscosity Effect on the Fluorescence of Molecules Undergoing Internal Rotations 132
- 5.8 Fluorescence in Solid Matrices at Low Temperature 135
 - 5.8.1 Shpol'skii Spectroscopy 136
 - 5.8.2 Matrix Isolation Spectroscopy
 - 5.8.3 Site-Selection Spectroscopy 137
- 5.9 Fluorescence in Gas Phase: Supersonic Jets Bibliography 138

6 Effects of Intermolecular Photophysical Processes on Fluorescence Emission 141

- 6.1 Introduction 141
- 6.2 Overview of the Intermolecular De-Excitation Processes of Excited Molecules Leading to Fluorescence Quenching 143 6.2.1 Phenomenological Approach 143

			Dynamic Quenching 146
			5.2.2.1 Stern-Volmer Kinetics 146
			5.2.2.2 Transient Effects 148
			Static Quenching 152
			5.2.3.1 Sphere of Effective Quenching 152
		6	5.2.3.2 Formation of a Ground-State Nonfluorescent
			Complex 153
			Simultaneous Dynamic and Static Quenching 154
			Quenching of Heterogeneously Emitting Systems 158
	6.3		duced Electron Transfer 159
	6.4	Format	ion of Excimers and Exciplexes 162
		6.4.1 I	Excimers 163
		6.4.2 I	Exciplexes 167
	6.5	Photoin	duced Proton Transfer 168
		6.5.1	General Equations for Deprotonation in the Excited State 170
		6.5.2 I	Determination of the Excited-State pK* 172
		6	5.5.2.1 Prediction by Means of the Förster Cycle 172
		6	5.5.2.2 Steady-State Measurements 173
		6	5.5.2.3 Time-Resolved Experiments 174
		6.5.3 p	pH Dependence of Absorption and Emission Spectra 174
		6.5.4 I	Equations for Bases Undergoing Protonation in the Excited
		5	State 178
	Bibl	iography	179
7			
7		rescence	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181
7	Fluo	rescence Polarize	Polarization: Emission Anisotropy 181
7	Fluo 7.1	rescence Polarize Charact	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181
7	Fluo 7.1	Polarize Charact Ratio a	e Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 cerization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184
7	Fluo 7.1	Polarize Charact Ratio at 7.2.1	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184
7	Fluo 7.1	Polarize Polarize Charact Ratio at 7.2.1	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 Excitation by Polarized Light 184
7	Fluo 7.1	Polarize Charact Ratio at 7.2.1	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 Excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184
7	Fluo 7.1	Polarize Charact Ratio at 7.2.1 1	e Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 Excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184 7.2.1.2 Horizontally Polarized Excitation 186
7	Fluo 7.1 7.2	Polarize Charact Ratio an 7.2.1 I	e Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 derization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 descritation by Polarized Light 184 descritation by Polarized Excitation 184 descritation 286 descritation by Natural Light 187
7	Fluo 7.1 7.2	Polarize Charact Ratio an 7.2.1 I 7.2.2 I Instanta 7.3.1 I	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 derization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184 7.2.1.2 Horizontally Polarized Excitation 186 excitation by Natural Light 187 eneous and Steady-State Anisotropy 187
7	7.1 7.2 7.3	Polarize Charact Ratio an 7.2.1 I 7.2.2 I Instanta 7.3.1 I 7.3.2 S	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184 7.2.1.2 Horizontally Polarized Excitation 186 excitation by Natural Light 187 eneous and Steady-State Anisotropy 187 instantaneous Anisotropy 187
7	7.1 7.2 7.3	Polarize Charact Ratio at 7.2.1 1 7.2.2 1 Instanta 7.3.1 1 7.3.2 5 Additivi	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184 7.2.1.2 Horizontally Polarized Excitation 186 excitation by Natural Light 187 eneous and Steady-State Anisotropy 187 enstantaneous Anisotropy 187 esteady-State Anisotropy 188 ety Law of Anisotropy 188
7	7.1 7.2 7.3	Polarize Charact Ratio an 7.2.1 I 7.2.2 I Instanta 7.3.1 I 7.3.2 S Additivi Relation	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184 7.2.1.2 Horizontally Polarized Excitation 186 excitation by Natural Light 187 eneous and Steady-State Anisotropy 187 firstantaneous Anisotropy 188 Steady-State Anisotropy 188
7	7.1 7.2 7.3	Polarize Charact Ratio an 7.2.1 I 7.2.2 I Instanta 7.3.1 I 7.3.2 S Additivi Relation the Em	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 derization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184 7.2.1.2 Horizontally Polarized Excitation 186 excitation by Natural Light 187 eneous and Steady-State Anisotropy 187 firstantaneous Anisotropy 188 ity Law of Anisotropy 188 in between Emission Anisotropy and Angular Distribution of
7	7.1 7.2 7.3 7.4 7.5	Polarize Charact Ratio an 7.2.1 I 7.2.2 I Instant 7.3.1 I 7.3.2 S Additivi Relation the Em. Case of	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184 7.2.1.2 Horizontally Polarized Excitation 186 excitation by Natural Light 187 eneous and Steady-State Anisotropy 187 eneous Anisotropy 187 esteady-State Anisotropy 188 in between Emission Anisotropy and Angular Distribution of esission Transition Moments 190 Motionless Molecules with Random Orientation 191
7	7.1 7.2 7.3 7.4 7.5	Polarize Charact Ratio an 7.2.1 I 7.2.2 I Instanta 7.3.1 I 7.3.2 S Additivi Relation the Emi Case of 7.6.1 I	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184 7.2.1.2 Horizontally Polarized Excitation 186 excitation by Natural Light 187 eneous and Steady-State Anisotropy 187 firstantaneous Anisotropy 188 ety Law of Anisotropy 189 ety Law of Anisotropy 180 ety Law of Anisotropy 180 ety Law of Anisotropy 181 ety Law of Anisotropy 188 ety Law of Anisotropy 188 ety Law of Anisotropy 189 ety Law of Anisotropy
7	7.1 7.2 7.3 7.4 7.5	Polarized Character Ratio and 7.2.1 Instanta 7.3.1 Instanta 7.3.2 Standard Relation the Emit Case of 7.6.1 In 7.6.2 In 7.6.2	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184 7.2.1.2 Horizontally Polarized Excitation 186 excitation by Natural Light 187 eneous and Steady-State Anisotropy 187 eneous Anisotropy 187 esteady-State Anisotropy 188 in between Emission Anisotropy and Angular Distribution of esission Transition Moments 190 Motionless Molecules with Random Orientation 191
7	7.1 7.2 7.3 7.4 7.5	Polarize Charact Ratio an 7.2.1 I 7.2.2 I Instanta 7.3.1 I 7.3.2 S Additivi Relation the Em Case of 7.6.1 I 7.6.2 I	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 Excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184 7.2.1.2 Horizontally Polarized Excitation 186 Excitation by Natural Light 187 eneous and Steady-State Anisotropy 187 firstantaneous Anisotropy 188 ity Law of Anisotropy 188 in between Emission Anisotropy and Angular Distribution of ission Transition Moments 190 Motionless Molecules with Random Orientation 191 Parallel Absorption and Emission Transition Moments 191 Nonparallel Absorption and Emission Transition Moments 192
7	7.1 7.2 7.3 7.4 7.5	Polarized Character Ratio and 7.2.1 Instanta 7.3.1 Instanta 7.3.2 Standard Relation the Emit Case of 7.6.1 In 7.6.2 In 7.6.2 In 7.6.3 In 7	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184 7.2.1.2 Horizontally Polarized Excitation 186 excitation by Natural Light 187 eneous and Steady-State Anisotropy 187 firstantaneous Anisotropy 188 in between Emission Anisotropy and Angular Distribution of ission Transition Moments 190 Motionless Molecules with Random Orientation 191 Parallel Absorption and Emission Transition Moments 192 Nonparallel Absorption and Emission Transition Moments 192
7	7.1 7.2 7.3 7.4 7.5 7.6	Polarized Character Ratio and 7.2.1 Instanta 7.3.1 Instanta 7.3.2 Stanta Additivities Emit Case of 7.6.1 In 7.6.2 In 7.6.3 In Effect of Figure 1.6.3	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 Excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184 7.2.1.2 Horizontally Polarized Excitation 186 Excitation by Natural Light 187 eneous and Steady-State Anisotropy 187 Enstantaneous Anisotropy 188 ity Law of Anisotropy 188 in between Emission Anisotropy and Angular Distribution of ission Transition Moments 190 Motionless Molecules with Random Orientation 191 Parallel Absorption and Emission Transition Moments 192 Multiphoton Excitation 196
7	7.1 7.2 7.3 7.4 7.5 7.6	Polarized Character Ratio and 7.2.1 Instanta 7.3.1 Instanta 7.3.2 Standitive Relation the Emit Case of 7.6.1 In 7.6.2 In Fifect of 7.7.1 In Effect of 7.7.1 In Figure 1.5 Polarized Polari	Polarization: Emission Anisotropy 181 ed Light and Photoselection of Absorbing Molecules 181 erization of the Polarization State of Fluorescence (Polarization and Emission Anisotropy) 184 Excitation by Polarized Light 184 7.2.1.1 Vertically Polarized Excitation 184 7.2.1.2 Horizontally Polarized Excitation 186 Excitation by Natural Light 187 eneous and Steady-State Anisotropy 187 Enstantaneous Anisotropy 188 ity Law of Anisotropy 188 in between Emission Anisotropy and Angular Distribution of ission Transition Moments 190 Motionless Molecules with Random Orientation 191 Parallel Absorption and Emission Transition Moments 191 Nonparallel Absorption and Emission Transition Moments 192 Multiphoton Excitation 196 if Rotational Motion 199

		7.7.1.2	Isotropic Ro	tations	20)1
		7.7.1.3	Anisotropic	Rotation	ıs	203
	7.7.2	Hinder	ed Rotations	206		
7.8	Applic	ations	207			
Bibl	iograph	ıy 210				

8 Excitation Energy Transfer 213

8.1 Introduction 213

- 8.2 Distinction between Radiative and Nonradiative Transfer 218
- 8.3 Radiative Energy Transfer 219
- 8.4 Nonradiative Energy Transfer 221
 - 8.4.1 Interactions Involved in Nonradiative Energy Transfer 221
 - 8.4.2 The Three Main Classes of Coupling 224
 - 8.4.3 Förster's Formulation of Long-Range Dipole-Dipole Transfer (Very Weak Coupling) 226
 - 8.4.4 Dexter's Formulation of Exchange Energy Transfer (Very Weak Coupling) 233
 - 8.4.5 Selection Rules 233
- 8.5 Determination of Distances at a Supramolecular Level Using FRET 235
 - 8.5.1 Single Distance between the Donor and the Acceptor 235
 - 8.5.2 Distributions of Distances in Donor-Acceptor Pairs 239
 - 8.5.3 Single Molecule Studies 242
 - 8.5.4 On the Validity of Förster's Theory for the Estimation of Distances 242
- 8.6 FRET in Ensembles of Donors and Acceptors 243
 - 8.6.1 FRET in Three Dimensions: Effect of Viscosity 243
 - 8.6.2 Effects of Dimensionality on FRET 247
 - 8.6.3 Effects of Restricted Geometries on FRET 250
- 8.7 FRET between Like Molecules: Excitation Energy Migration in Assemblies of Chromophores 250
 - 8.7.1 FRET within a Pair of Like Chromophores 251
 - 8.7.2 FRET in Assemblies of Like Chromophores 251
 - 8.7.3 Lack of Energy Transfer upon Excitation at the Red Edge of the Absorption Spectrum (Weber's Red-Edge Effect) 252
- 8.8 Overview of Qualitative and Quantitative Applications of FRET 252 Bibliography 258

Part II Techniques 263

9 Steady-State Spectrofluorometry 265

- 9.1 Operating Principles of a Spectrofluorometer 265
- 9.2 Correction of Excitation Spectra 268

10

07103		
9.3	Correct	ion of Emission Spectra 268
9.4		ement of Fluorescence Quantum Yields 269
9.5		e Artifacts in Spectrofluorometry 271
		nner Filter Effects 271
	9	0.5.1.1 Excitation Inner Filter Effect 271
	g	0.5.1.2 Emission Inner Filter Effect (Self-Absorption) 272
		0.5.1.3 Inner Filter Effects due to the Presence of Other
		Substances 274
	9.5.2	Autofluorescence 274
	9.5.3 I	Polarization Effects 275
		Effect of Oxygen 275
		Photobleaching Effect 276
9.6		ement of Steady-State Emission Anisotropy:
		ation Spectra 277
		Principles of Measurement 277
		Possible Artifacts 279
		Tests Prior to Fluorescence Polarization Measurements 279
App		A Elimination of Polarization Effects in the Measurement of
		nce Intensity 281
	iography	•
	0 1 7	
Time	-Resolve	ed Fluorescence Techniques 285
10.1		Equations of Pulse and Phase-Modulation Fluorimetries 286
		Pulse Fluorimetry 286
		Phase-Modulation Fluorimetry 286
		Relationship between Harmonic Response and δ-Pulse
		Response 287
	10.1.4	General Relations for Single Exponential and
		MultiExponential Decays 290
10.2	Pulse	Fluorimetry 292
		Light Sources 292
	10.2.2	Single-Photon Timing Technique (10 ps-500 µs) 292
	10.2.3	
	10.2.4	Fluorescence Upconversion (0.1–500 ps) 295
		Optical Kerr-Gating (0.1–500 ps) 297
10.3	Phase-	Modulation Fluorimetry 298
	10.3.1	Introduction 298
	10.3.2	Phase Fluorimeters Using a Continuous Light Source and an
		Electro-Optic Modulator 300
	10.3.3	Phase Fluorimeters Using the Harmonic Content of a Pulsed

Laser 302

10.4 Artifacts in Time-Resolved Fluorimetry 302 10.4.1 Inner Filter Effects 302

10.4.2 Dependence of the Instrument Response on Wavelength-Color Effect 304

		10.4.3	Polarization Effects 304
		10.4.4	Effects of Light Scattering 304
	10.5	Data Aı	nalysis 305
		10.5.1	Pulse Fluorimetry 305
		10.5.2	Phase-Modulation Fluorimetry 306
		10.5.3	Judging the Quality of the Fit 306
		10.5.4	Global Analysis 307
		10.5.5	Fluorescence Decays with Underlying Distributions of Decay
			Times 308
			e Standards 312
	10.7		esolved Polarization Measurements 314
		10.7.1	General Equations for Time-Dependent Anisotropy and
			Polarized Components 314
			Pulse Fluorimetry 315
			Phase-Modulation Fluorimetry 317
		10.7.4	Reference Compounds for Time-Resolved Fluorescence
			Anisotropy Measurements 318
			esolved Fluorescence Spectra 318
			e-Based Decomposition of Spectra 318
	10.10	_	arison between Single-Photon Timing Fluorimetry and
			Modulation Fluorimetry 322
	Biblic	graphy	323
11	Fluor	escence	Microscopy 327
	11.1	Wide-F	ield (Conventional), Confocal, and Two-Photon Fluorescence
		Microso	copies 328
		11.1.1	Wide-Field (Conventional) Fluorescence
			Microscopy 328
		11.1.2	Confocal Fluorescence Microscopy 329
		11.1.3	Two-Photon Excitation Fluorescence Microscopy 331
		11.1.4	Fluorescence Polarization Measurements in Microscopy 333
	11.2	Super-I	Resolution (Subdiffraction) Techniques 333
		11.2.1	Scanning Near-Field Optical Microscopy (SNOM) 333
		11.2.2	Far-Field Techniques 337
	11.3	Fluores	cence Lifetime Imaging Microscopy (FLIM) 340
		11.3.1	Time-Domain FLIM 341
		11.3.2	Frequency-Domain FLIM 342
	11.4	Applica	tions 342
	Biblio	ography	346
12	Fluor	escence	Correlation Spectroscopy and Single-Molecule Fluorescence
		roscopy	· · · · · · · · · · · · · · · · · · ·
	12.1		scence Correlation Spectroscopy (FCS) 349
			Conceptual Basis and Instrumentation 350
		12.1.2	Determination of Translational Diffusion Coefficients 355

	12.1.3	Chemical Kinetic Studies 356
	12.1.4	Determination of Rotational Diffusion Coefficients 359
	12.1.5	Cross-Correlation Methods 360
12.2	Single-	Molecule Fluorescence Spectroscopy 360
	_	General Remarks 360
	12.2.2	Single-Molecule Detection in Flowing Solutions 361
		Single-Molecule Detection Using Fluorescence Microscopy
		Techniques 363
	1224	Single-Molecule and Single-Particle Photophysics 367
		Applications and Usefulness of Single-Molecule
	12.2.5	Fluorescence 371
Riblia	ography	
21011	-6- - 1	3,2
Part	III App	lications 377
	• •	
Evalu	ation of	Local Physical Parameters by Means of
		Probes 379
13.1	Fluore	scent Probes for Polarity 379
		Examples of Photoinduced Charge Transfer (PCT) Probes for
		Polarity 380
	13.1.2	Pyrene and Its Derivatives 384
13.2		tion of "Microviscosity," Fluidity, and Molecular Mobility 38-
		Various Methods 385
	13.2.2	Use of Molecular Rotors 386
		Methods Based on Intermolecular Quenching or
		Intermolecular Excimer Formation 389
	13.2.4	Methods Based on Intramolecular Excimer Formation 390
		Fluorescence Polarization Method 393
		13.2.5.1 Choice of Probes 393
		13.2.5.2 Homogeneous Isotropic Media 393
		13.2.5.3 Ordered Systems 395
		13.2.5.4 Practical Aspects 395
	13.2.6	Concluding Remarks 397
13.3		erature 398
	-	re 402
Bibli	ography	404
	0 1 ,	
Chen	nical Ser	nsing via Fluorescence 409
14.1		uction 409
14.2	Variou	s Approaches of Fluorescence Sensing 410
14.3		scent pH Indicators 412
	14.3.1	Principles 412
	14.3.2	The Main Fluorescent pH Indicators 417
		14.3.2.1 Coumarins 417

		14.3.2.2 Pyranine 417
		14.3.2.3 Fluorescein and Its Derivatives 419
		14.3.2.4 SNARF and SNAFL 419
		14.3.2.5 pH Indicators Based on Photoinduced Electron
		Transfer (PET) 420
14.4	Design	Principles of Fluorescent Molecular Sensors Based on Ion or
	_	le Recognition 420
		General Aspects 420
		Recognition Units and Topology 422
		Photophysical Signal Transduction 424
	11.1.5	14.4.3.1 Photoinduced Electron Transfer (PET) 424
		14.4.3.2 Photoinduced Charge Transfer (PCT) 425
		14.4.3.3 Excimer Formation or Disappearance 427
		14.4.3.4 Förster Resonance Energy Transfer
		(FRET) 427
14.5	Fluores	cent Molecular Sensors of Metal Ions 427
1 1		General Aspects 427
		Fluorescent PET Cation Sensors 430
		Fluorescent PCT Cation Sensors 430
		Excimer-Based Cation Sensors 430
		Cation Sensors Based on FRET 430
		Hydroxyquinoline-Based Cation Sensors 432
		Concluding Remarks on Cation Sensors 435
14.6		cent Molecular Sensors of Anions 436
	14.6.1	Anion Sensors Based on Collisional Quenching 437
	14.6.2	Anion Sensors Based on Fluorescence Changes upon Anion
		Binding 437
		14.6.2.1 Urea and Thiourea Groups 438
		14.6. 2 .2 Pyrrole Groups 439
		14.6.2.3 Polyazaalkanes 440
		14.6.2.4 Imidazolium Groups 443
		14.6.2.5 Anion Binding by Metal Ion Complexes 443
	14.6.3	Anion Sensors Based on the Displacement of a Competitive
		Fluorescent Anionic Molecule 444
14.7		scent Molecular Sensors of Neutral Molecules 445
	14.7.1	Cyclodextrin-Based Fluorescent Sensors 446
	14.7.2	Boronic Acid-Based Fluorescent Sensors 449
	14.7.3	Porphyrin-Based Fluorescent Sensors 452
14.8		scence Sensing of Gases 453
	14.8.1	Oxygen 453
		Carbon Dioxide 456
		Nitric Oxide 456
	14.8.4	-
14.9		g Devices 458
14.10	Kemo	te Sensing by Fluorescence LIDAR 460

	14.10.1 Vegetation Monitoring 461
	14.10.2 Marine Monitoring 462
	14.10.3 Historic Monuments 462
	Appendix 14.A. Spectrophotometric and Spectrofluorometric
	pH Titrations 462
	Single-Wavelength Measurements 462
	Dual-Wavelength Measurements 463
	Appendix 14.B. Determination of the Stoichiometry and Stability Constant
	of Metal Complexes from Spectrophotometric or Spectrofluorometric
	Titrations 465
	Definition of the Equilibrium Constants 465
	Preliminary Remarks on Titrations by Spectrophotometry and
	Spectrofluorometry 467
	Formation of a 1:1 Complex (Single-Wavelength Measurements) 467
	Formation of a 1:1 Complex (Dual-Wavelength Measurements) 469
	Formation of Successive Complexes ML and M ₂ L 470
	Cooperativity 471
	Determination of the Stoichiometry of a Complex by the Method of
	Continuous Variations (Job's Method) 471
	Bibliography 473
15	Autofluorescence and Fluorescence Labeling in Biology and Medicine 479 15.1 Introduction 479 15.2 Natural (Intrinsic) Chromophores and Fluorophores 480 15.2.1 Amino Acids and Derivatives 481 15.2.2 Coenzymes 488 15.2.3 Chlorophylls 490 15.3 Fluorescent Proteins (FPs) 491 15.4 Fluorescent Small Molecules 493 15.5 Quantum Dots and Other Luminescent Nanoparticles 497 15.6 Conclusion 501 Bibliography 502
16	Missellansova Applications 507
16	Miscellaneous Applications 507 16.1 Fluorescent Whitening Agents 507
	16.2 Fluorescent Wintering Agents 507 16.2 Fluorescent Nondestructive Testing 508
	16.3 Food Science 511
	16.4 Forensics 513
	16.5 Counterfeit Detection 514
	16.6 Fluorescence in Art 515
	Bibliography 518
	PromoBrahm) 210
	Appendix: Characteristics of Fluorescent Organic Compounds 521 Epilogue 551 Index 553