Contents

Ţ	AII .	muroau	cuon to the book and a Road Map	7
	1.1	Introd	uction	1
	1.2	A Roa	d Map	1
2	An :	Introdu	ction to the Spectral Method	3
	2.1		Iethod	3
		2.1.1	The Chebyshev Gauss-Lobatto Collocation	
		•	Differentiation Matrices	4
		2.1.2	Why We Use Non-uniform Grids	8
		2.1.3	Chebyshev Polynomials and the Pseudo-Spectrum	10
		2.1.4	Differentiation Matrices in the Pseudo-Spectral Space	14
		2.1.5	Gauss-Radau Collocation Differentiation Matrices	16
		2.1.6	Boundary Conditions	17
	2.2	What	Lies Ahead	17
2.3 Endnotes		Endno	otes	18
		2.3.1	Accurate Evaluation of Definite Integrals	18
		2.3.2	Some Useful Relationships Involving	
			the Chebyshev Polynomials	19
	Refe	erences		20
3	Stea	dy One	e-Dimensional (ID) Heat Conduction Problems	21
	3.1	-	Oomain Problems	21
		3.1.1	An Inhomogeneous Problem	
			with Dirichlet-Dirichlet (DD) Conditions	21
		3.1.2	An Inhomogeneous Problem	
			with Neumann-Dirichlet (ND) Conditions	23
		3.1.3	An Inhomogeneous Problem	
			with Neumann-Neumann (NN) Conditions	24
		3.1.4	Homogeneous Problems with Dirichlet	
			and/or Neumann Conditions	26

x Contents

		3.1.5	Robin Boundary Conditions	28
		3.1.6	Why We are Interested in Homogeneous	
			Differential Problems	29
		3.1.7	Homogeneous Problems with Radial Coordinates	29
	3.2	Two-N	Medium/Two-Domain Problems	32
		3.2.1	Two-Medium Inhomogeneous Problem	
			with Interface Conditions	33
		3.2.2	Two-Domain Inhomogeneous Problem	
			and Numerical-Accuracy Considerations	36
		3.2.3	Homogeneous Problem with Interface Conditions	37
	3.3	Endno	otes	38
		3.3.1	The Partial Inverse of A and Solvability of $AU = F \dots$	38
		3.3.2	Transforming the Generalized Eigenvalue Problem	
			into an Ordinary Eigenvalue Problem	42
		3.3.3	The Leading Eigenmodes and Non-leading	
		0.0.0	Eigenmodes	45
		3.3.4	Ellipticity of an Operator	46
		3.3.5	Inhomogeneous Problem in Polar Coordinates	48
		3.3.6	Transforming the Two-Domain Coupled	, ,
		3.3.0	Inhomogeneous Problem into a Set of Uncoupled	
			Problems and Extension to the Multi-Domain Case	51
		3.3.7	Transforming the Two-Domain Coupled Homogeneous	٠,
		3.3.1	Problem into an Ordinary Eigenvalue Problem	54
		3.3.8	The Distinction Between the Error and the Residual	57
		3.3.9	A Particular Caution When Solving Coupled	31
		3.3.9	Differential Problems	58
	Dof	rangas	Differential Fromenia.	60
	Kele	ciences		00
4	Unc	toody 1	D Heat Conduction Problems	61
4	4.1		homogeneous Problem with Neumann Conditions	61
	4.1	4.1.1	Continuous Problem	62
		4.1.1	Time Discretization	62
			Fully Discretized System	64
		4.1.3		64
	4.0	4.1.4	Note on the Flux Solvability Condition	65
	4.2		homogeneous Problem with a Non-linear Source Term	65
	4.3		Convection-Diffusion Heat Equation	66 66
	4.4	Some Closing Thoughts on Time Marching		
	4.5	Endno		67
		4.5.1	From Taylor Expansions to Time Discretization	67
		4.5.2	The Destiny of a Solution to a Transient Problem	
			Whose Steady Counterpart is not Solvable	68
		4.5.3	Comment About the Accuracy of the Time	
			Discretization Approach	69

Contents xi

	Refe	4.5.4 rences	Time Integration can be Spectrally Accurate	71 73
_	0.4	1 700		7.5
5			p-Dimensional (2D) Heat Conduction Problems	75
	5.1		Oomain Problems	75
		5.1.1	Inhomogeneous Problem in Cartesian Coordinates	75
		5.1.2	Inhomogeneous Problems in (r, z)	0.5
		5 1 0	Cylindrical Coordinates	85
	<i>5</i> 0	5.1.3	Homogeneous Problems	89
	5.2		Medium Inhomogeneous Problems	90
	<i>5</i> 2	with Interface Conditions		
	5.3		tes	94
		5.3.1	Kronecker Product	94
		5.3.2	Multi-dimensional Matrix Multiplication	95
		5.3.3	An Optimized Solver for $\nabla^2 u = f$ Using	07
		504	Successive Diagonalization	97
		5.3.4	Solving the 2D Two-Medium Inhomogeneous Diffusion	105
	D - C		Problems by Successive Diagonalization	105 111
	Kere	rences		111
6	2D (Flow Problems: The Driven Cavity	113
	6.1		riven Cavity and Navier-Stokes Equations	113
	6.2		tokes Problem	114
	6.3		e of the Remaining Part of the Chapter	116
	6.4		D Stokes Eigenproblem	116
		6.4.1	Numerical Procedure	117
		6.4.2	Spurious Pressure Modes (SPM)	120
	6.5		tokes Steady Flow Problem	123
		6.5.1	Regularizing the Model	124
		6.5.2	Numerical Procedure	124
	6.6		Insteady Stokes Flow Problem	125
		6.6.1	The (\mathbf{v}, p) Uncoupling by Projection-Diffusion	126
		6.6.2	Time Discretization	129
		6.6.3	Space Discretization of the Projection Step	130
		6.6.4	A Comment on Why We Do not Use $\nabla^2 p$ to	
			Determine the Pressure Field	139
			Other Stokes Solvers	139
	6.7		Javier-Stokes Flow Problem	140
		6.7.1	The Non-linear Equations	140
		6.7.2	Numerical Procedure	140
		6.7.3	Numerical Stability Considerations	141
	6.8	Endno		143
		6.8.1	Ellipticity of the Stokes Operator	143
		6.8.2	Constructing the 2D/3D Pressure Operator	
			from Projection-Diffusion	144

xii Contents

		6.8.3	The Projection-Diffusion "toy" Problem Posed		
			in a Two-domain Configuration	148	
		6.8.4	Projection-Diffusion in 2D Multi-domain	156	
	References				
7	App	lication	s to Transport Instabilities	171	
	7.1		on in a Solid	173	
		7.1.1	Method (a): Time Marching	174	
		7.1.2	Method (b): Steady-Solution Determination		
			and Continuation Methods	177	
		7.1.3	Method (c): The Leading Eigenvalue of the Problem		
			Linearized About a Base State	183	
		7.1.4	Some Closing Thoughts	185	
	7.2	The R	ayleigh-Bénard Problem in a Porous Medium	185	
		7.2.1	Scaled Equations	187	
		7.2.2	Method (a): Time Marching		
			with the Non-linear Problem	188	
	•	7.2.3	Method (b): Steady-Solution Determination	193	
		7.2.4	Method (c): The Leading Eigenvalue of the Problem		
			Linearized About a Base State	199	
		7.2.5	Method (d): The Time Marching with the Problem		
			Linearized About a Base State	203	
	7.3	Solidi	fication Front	204	
		7.3.1	The Model and Its Base State	205	
		7.3.2	The Front Instability and the Linearized Equations	206	
		7.3.3	The Numerical Evaluation of the Time		
			Growth Rate, σ	209	
		7.3.4	Results of the Calculation	210	
	Refe	erences		211	
8	Exe	rcises f	or the Reader	213	
	Refe	erences		226	
T	dov			227	