Contents

1	Intr	oduction	1		
	1.1	Documentation	1		
	1.2	Units and Physical Constants	2		
	1.3	Special Relativity	3		
	1.4	Probability and Statistics	7		
	1.5	The Structure of Matter at the Microscopic Scale	9		
	1.6	Nuclei and Nuclear Decay	16		
		1.6.1 The Beta Decay	17		
		1.6.2 The Alpha Decay	18		
		1.6.3 The Gamma Decay	19		
		1.6.4 Electron Capture and Internal Conversion	19		
		1.6.5 The Radioactive Decay Law	20		
		1.6.6 The Nuclear Level Diagram	21		
	1.7	Exercises	22		
	Refe	rences	22		
2	Interactions of Particles in Matter				
_	2.1	Cross Section and Mean Free Path	23		
	2.2	Energy Loss of a Charged Particle due to Its Interaction			
		with the Electrons	25		
	2.3	Other Electromagnetic Interactions of Charged Particles	31		
	2.4	Interactions of X-Rays and Gamma Rays in Matter	39		
	2.5	Interactions of Particles in Matter due to the Strong Force	45		
	2.6	Neutrino Interactions	49		
	2.7	Illustrations of the Interactions of Particles	51		
	2.8	Exercises	53		
	Refe	rences	53		
3	Note	ıral and Man-Made Sources of Radiation	55		
J	3.1	Natural Sources of Radiation	55		
	3.2	Units of Radiation and Radiation Protection	59		
	3.3	Electrostatic Accelerators	62		
	3.3 3.4		65		
		Cyclotrons			
	3.5	The Quest for the Highest Energy, Synchrotrons and Colliders	72		

viii Contents

	3.6	Linear Accelerators	80
	3.7	Secondary Beams	90
	3.8	Applications of Accelerators	93
	3.9	Outlook	99
	3.10	Exercises	102
	Refe	rences	102
4	Dete	ectors Based on Ionisation in Gases	105
•	4.1	Introduction to Detectors for Subatomic Particles	105
	4.2	Ionisation and Charge Transport in Gases	107
	4.3	Ionisation Chambers	111
	4.4	Counters with Gas Amplification	116
	4.5	Applications of Counters with Gas Amplification	126
	7.5	4.5.1 Proportional Counters for X-Ray Detection	127
		4.5.2 Gas Counters for the Tracking of High-Energy	12/
		Charged Particles	128
		4.5.3 Applications of Gas Counters in Homeland Security	135
	4.6	Recent Developments in Counters Based on Gas Amplification	135
	4.0	4.6.1 Micro-strip Gas Counters (MSGC)	136
		4.6.2 GEM and MICROMEGAS Counters	137
		4.6.3 Resistive Plate Chambers	139
	47	Exercises	141
	•••	rences	141
5		ectors Based on Ionisation in Semiconductor Materials	143
	5.1	Introduction to Semiconductors	143
	5.2	The Semiconductor Junction as a Detector	150
	5.3	Silicon Semiconductor Detectors	156
	5.4	Germanium Semiconductor Detectors	159
	5.5	Other Semiconductor Detector Materials	161
	5.6	Exercises	164
	Refe	rences	165
6	Dete	ectors Based on Scintillation	167
	6.1	Introduction to Scintillators	167
	6.2	Organic Scintillators	168
	6.3	Inorganic Scintillators	171
	6.4	Photodetectors	177
	6.5	Using Scintillators in the Nuclear Energy Range	185
	6.6	Applications of Scintillators in High-Energy Physics	192
	6.7	Applications of Scintillators in Medicine	198
	6.8	Exercises	207
	Refe	rences	207
7	Nem	tron Detection	209
-	7.1	Slow Neutron Detection	209
	7.1	Neutron Detectors for Nuclear Reactors	213

Contents ix

	7.3	Fast Neutron Detection	216 216 218
	7.4 Pofo	Exercises	224 224
		rence	
8	Elect	tronics for Particle Detectors	225
	8.1	Introduction	225
	8.2	Impulse Response and Transfer Function	230
	8.3	Amplifiers for Particle Detectors	238
	8.4	The Thermal Noise of a Resistor	246
	8.5	Resistor and Transistor Noise in Amplifiers	253
		8.5.1 Noise Contribution of a Parallel Resistor or a Series Resistor	254
		8.5.2 Noise Due to the First Transistor	258
	8.6	Shot Noise	262
	8.7	Summary and Conclusions	266
	8.8	Exercises	268
	Refe	rences	269
Sol	lution	s to Exercises	271
An	nex 1	: Physical Constants	295
An	nex 2	: International System of Units	296
An	nex 3	: Atomic and Molecular Properties of Materials	297
		: Periodic Table of Elements	299
		: Electromagnetic Relations	300
		: Commonly Used Radioactive Sources	302
Inc	lex .		303