

Contents

Part I Cell Differentiation and Development In Vitro

1 Developmental Biology of Somatic Embryogenesis	3
R.J. Rose, F.R. Mantiri, S. Kurdyukov, S-K. Chen, X-D. Wang, K.E. Nolan, and M.B. Sheahan	
1.1 Introduction	3
1.2 Basic Requirements for In Vitro SE	4
1.3 Explant and Stem Cell Biology	5
1.3.1 Genotype	5
1.3.2 Explant Cells	6
1.4 Earliest Event in Embryogenesis—Asymmetric Cell Division	8
1.4.1 Cell Wall in Establishment of Polarity, Division Asymmetry and Cell Fate	8
1.4.2 Division Asymmetry in the Initiation of SE	10
1.4.3 Asymmetric Division and the Suspensor in SE	10
1.5 Stress Component in the Initiation of SE	11
1.5.1 Reactive Oxygen Species	11
1.5.2 Stress-Related Hormone Signalling	12
1.6 Hormones and the Initiation of SE	13
1.7 Induction of SE by Over-Expression of Leafy Cotyledon Transcription Factors and Their Relationship to SE Induction and Repression—the GA Connection	14
1.8 ABA, Stress and GA	16
1.9 Soluble Signals and Cell–Cell Interactions that Promote SE in Suspension Cultures	16
1.9.1 Secreted Proteins that Influence SE	16
1.9.2 AGP Signalling in SE: Mechanisms and Interactions Between Signalling Pathways	17
1.9.3 Cell–Cell Interaction and Relevance to SE in Suspension Cultures	18

1.10 Development Program After SE Induction	19
1.11 Concluding Remarks and a Model Based on Studies in <i>Medicago truncatula</i>	19
1.12 SE and Biotechnology	20
References	21
2 Microspore Embryogenesis	27
A. Olmedilla	
2.1 Introduction	27
2.2 Discovery of the Production of Haploids by Anther Culture	29
2.3 Strategies for the Induction of Microspore Embryogenesis	29
2.4 Influence of Different Factors in Microspore Embryogenesis	30
2.4.1 Genotype	30
2.4.2 Donor Plant Physiology	31
2.4.3 Stage of Pollen Development	31
2.4.4 Pre-treatments	32
2.4.5 Culture Conditions	32
2.4.6 Composition of the Medium	33
2.5 Cellular and Molecular Events Associated with Microspore Embryogenesis	34
2.5.1 Embryogenic Induction	34
2.5.2 Early Embryogenic Divisions	37
2.5.3 Development of Embryo Pattern	38
2.5.4 Plant Formation and Diploidization	39
2.6 Conclusions	39
References	40
3 Stress and Somaclonal Variation	45
A.M. Vázquez and R. Linacero	
3.1 Introduction	45
3.2 Stress Responses in Plants	46
3.2.1 Short-Term Responses	46
3.2.2 Long-Term Responses	47
3.2.3 Modifications Induced by Stress Could Be Inheritable	49
3.3 Tissue Culture Imposes a Stress to Cultivated In Vitro Cells	50
3.4 Cultured Cells and Regenerated Plants Show Variations	52
3.4.1 Heritable Changes Versus Non-Heritable Changes	54
3.4.2 Genetic Versus Epigenetic Changes	55
3.4.3 Variation Promoted by Tissue Culture is Not Randomly Distributed in the Genome	57
3.4.4 Are New Alleles Originated by In Vitro Stress Already Present in Other Plants of In Vivo Populations?	58
3.5 Concluding Remarks	58
References	58

Part II Plant Processes and Their Regulation

4 Photosynthate Partitioning	67
N.G. Halford	
4.1 Introduction	67
4.2 Source and Sink	69
4.3 Sugars as Signalling Molecules	69
4.4 Key Metabolic Regulators	70
4.4.1 SNF1-Related Protein Kinase 1 (SnRK1)	70
4.4.2 Hexokinase	74
4.4.3 The Trehalose Pathway	74
4.5 Applications in Biotechnology	75
4.6 Concluding Remarks	79
References	80
5 Molecular Physiology of Seed Maturation and Seed Storage	83
Protein Biosynthesis	83
H. Weber, N. Sreenivasulu, and W. Weschke	
5.1 Introduction	83
5.2 Seed Maturation	84
5.3 Sucrose as a Maturation Signal	85
5.4 Synthesis and Deposition of Storage Proteins in Crop Seeds	86
5.5 Storage Proteins in Cereals	87
5.5.1 Storage Proteins in the Different Grain Parts	87
5.5.2 Transcriptional Regulation of <i>Arabidopsis</i> Seed Maturation ...	89
5.5.3 Transcriptional Regulation of <i>Arabidopsis</i> Seed Maturation—a Model Also for Cereal Seeds?	89
5.5.4 Unravelling Transcriptional Regulation by Co-Expression Analysis	90
5.5.5 DNA Methylation and Storage Protein Gene Expression in the Barley Endosperm	92
5.6 Metabolic Control of Seed Storage Protein Synthesis	93
5.6.1 Nitrogen Availability and Signalling	93
5.6.2 Carbon Availability	96
5.7 Outlook	98
References	99
6 Fatty Acid Biosynthesis and Regulation in Plants	105
R. Rajasekharan and V. Nachiappan	
6.1 Introduction	105
6.2 Fatty Acid Biosynthesis	106
6.2.1 De Novo Fatty Acid Biosynthesis	106
6.2.2 Regulation of ACCase	108
6.3 Fatty Acid Elongation	109

6.4 Fatty Acid Desaturation	110
6.5 Unusual Fatty Acids	110
6.6 Assembly of Fatty Acids	111
6.7 Conclusions	112
References	112
7 Biosynthesis and Regulation of Carotenoids in Plants—Micronutrients, Vitamins and Health Benefits	117
C.I. Cazzonelli, N. Nisar, D. Hussain, M.E. Carmody, and B.J. Pogson	
7.1 Introduction: Carotenoid Biosynthesis in Higher Plants	117
7.2 Carotenoids and Plant Development	121
7.3 Health Benefits of Carotenoid-Derived Vitamins and Nutrients ...	123
7.3.1 Zeaxanthin, Lutein and Prevention of Macular Degeneration	125
7.3.2 β -Carotene and the Biosynthesis of Vitamin A	126
7.3.3 Antioxidant Properties of Other Xanthophylls and Xanthophyll Derivatives	129
7.4 Conclusions and Future Prospects	130
References	130
8 Biosynthesis and Regulation of Alkaloids	139
G. Guirimand, V. Courdavault, B. St-Pierre, and V. Burlat	
8.1 Introduction	139
8.2 Chemical Diversity and Biosynthesis	140
8.2.1 Biosynthesis of Monoterpene Indole Alkaloids (MIA)	140
8.2.2 Biosynthesis of Benzylisoquinoline Alkaloids (BIA)	147
8.2.3 Biosynthesis of Tropane and Nicotine Alkaloids (TNA)	147
8.2.4 Biosynthesis of Purine Alkaloids (PA)	148
8.3 Spatial Organisation of Alkaloid Biosynthesis	148
8.3.1 Crystallisation and Three-Dimensional Structure of Alkaloid Biosynthetic Enzymes	152
8.3.2 Transcription Factor Regulatory Networks of Alkaloid Biosynthesis	153
8.3.3 Metabolic Engineering of Alkaloid Biosynthesis	154
8.4 Conclusions	155
References	156
9 Molecular Biology and Biotechnology of Flower Pigments	161
K.M. Davies and K.E. Schwinn	
9.1 Introduction	161
9.2 Pigment Biosynthetic Pathways and Their Genetic Modification ...	162
9.2.1 Flavonoids	162
9.2.2 Carotenoids	167
9.2.3 Betalains	173

9.3	Regulation of Floral Pigmentation	175
9.3.1	Transcriptional Control	176
9.3.2	Developmental Signalling	178
9.3.3	Biotechnology Applications of TFs	179
9.4	Concluding Comments	180
	References	181
10	Biosynthesis and Regulation of Flower Scent	189
	B. Piechulla and U. Effmert	
10.1	Introduction	189
10.2	Functions of Floral Scents	190
10.2.1	Floral Scents for Pollination	190
10.2.2	Floral Scents with Diverse Functions	190
10.3	Patterns of Floral Emission	191
10.4	Biosynthetic Pathways and Key Enzymes	193
10.4.1	Terpenoids	194
10.4.2	Benzenoids and Phenylpropanoids	194
10.4.3	Aliphatic Compounds	195
10.5	Regulation of Floral Volatile Biosynthesis	196
10.5.1	Regulation at the Molecular Level	196
10.5.2	Mechanisms of Regulation	197
10.6	Biotechnological Aspects	198
10.7	Conclusions	201
	References	201

Part III Hormonal and Environmental Signalling

11	Amino Compound-Containing Lipids: a Novel Class of Signals	
	Regulating Plant Development	209
	R. Ortiz-Castro, A. Méndez-Bravo, and J. López-Bucio	
11.1	Introduction	209
11.2	Biosynthesis and Metabolism of Acylamides in Plants	210
11.3	Distribution of Acylamides	212
11.4	Role of NAEs and Alkamides in Plant Development	213
11.4.1	Seed Germination	214
11.4.2	Shoot Development	215
11.4.3	Root Development	217
11.5	Signals Interacting with NAEs and Alkamides	218
11.5.1	Auxins	218
11.5.2	Cytokinins	219
11.5.3	Nitric Oxide	219
11.6	Cellular Alterations Underlying Plant Responses to NAEs and Alkamides: Cell Cycle Progression and Microtubule Stability ...	220
11.6.1	Cell Cycle Progression	220

11.6.2	Microtubule Stability	221
11.7	AHLs: Inter-Kingdom Signals for Plant–Bacterial Interactions	221
11.8	Concluding Remarks	223
	References	223
12	The Roles of <i>YUCCA</i> Genes in Local Auxin Biosynthesis and Plant Development	227
	Y. Zhao	
12.1	Introduction	227
12.2	Identification of <i>YUCCA</i> Flavin Monooxygenases as Key Enzymes in Auxin Biosynthesis	227
12.3	<i>YUC</i> Genes Have Dynamic Expression Patterns	230
12.4	<i>YUC</i> Genes Are Conserved in the Plant Kingdom	231
12.5	Dissection of Auxin Action Mechanisms on the Basis of Auxin Biosynthesis	231
12.6	Conclusions	233
	References	234
13	Role of Cytokinin in the Regulation of Plant Development	237
	T. Kiba and H. Sakakibara	
13.1	Introduction	237
13.2	Cytokinin Biosynthesis and Metabolism	238
13.2.1	Chemical Structure and Activity of Cytokinins	238
13.2.2	De Novo Synthesis	238
13.2.3	Activation	239
13.2.4	Degradation	240
13.3	Cytokinin Signaling	240
13.3.1	HKs Act as Cytokinin Sensors	241
13.3.2	HPs Mediate the Cytokinin Signal	242
13.3.3	Type-B RRs Are Transcription Factors that Positively Regulate Cytokinin Responses	242
13.3.4	Type-A RRs Act as Negative Regulators of Cytokinin Signaling	243
13.3.5	Downstream Targets of His-Asp Phosphorelay	243
13.4	Molecular Mechanisms of Cytokinin Action in Plant Development	244
13.4.1	Maintenance of Vegetative Shoot Apical Meristems	244
13.4.2	Inflorescence Meristem Activity	246
13.4.3	Root Meristem Maintenance and Root Vascular Development	247
13.4.4	Nodule Organogenesis	249
13.4.5	Other Developmental Events	250
13.5	Perspectives	250
	References	250

14 Light Signalling in Plant Developmental Regulation	255
A. Galstyan and J.F. Martínez-García	
14.1 Introduction	255
14.2 Plant Photomorphogenesis: Various Responses to a Complex Stimulus	256
14.3 Sensing Changes in Light Conditions: Multiple Photoreceptors Continuously Monitor the Light Environment	256
14.3.1 Phytochromes	256
14.3.2 Cryptochromes	258
14.3.3 Phototropins, Other LOV Domain-Containing Proteins and UV-B Receptors	260
14.4 Physiological Responses During Photomorphogenesis: Roles of Photoreceptors in Plant Development	260
14.4.1 Germination	260
14.4.2 De-Etiolation	261
14.4.3 Phototropism	261
14.4.4 Chloroplast Movement	261
14.4.5 Shade Avoidance Syndrome	262
14.4.6 Photoperiodic Responses	262
14.5 Photoreceptor Signal Transduction	263
14.5.1 Genetic Analyses: Identification of Key Players	263
14.5.2 Phosphorylation/Dephosphorylation	265
14.5.3 Ubiquitination/Proteasome-Mediated Proteolysis	267
14.5.4 Light-Regulated Transcriptional Networks: Changes in Gene Expression	268
14.6 Light Interaction with Endogenous Networks	268
14.6.1 Hormone Connections	268
14.6.2 Light-Clock Signal Integration	271
14.7 Applied Aspects of Photomorphogenic Research	271
14.7.1 What Is Fit Under Natural Conditions Might Be Inadequate for Agriculture	271
14.7.2 Classical Breeding for the Development of Agronomical Varieties Has Selected Light-Regulated Traits	272
14.8 Is There a General Strategy to Modulate Photomorphogenic Traits for Crop Improvement?	273
References	274

Part IV Molecular Genetics of Developmental Regulation

15 RNA Silencing in Plants	277
A. Eamens, S.J. Curtin, and P.M. Waterhouse	
15.1 Introduction	277
15.2 History of RNA Silencing in Plants	278
15.3 The Parallel Gene Silencing Pathways of Plants	281

15.3.1 The MicroRNA Pathway	282
15.3.2 The <i>trans</i> -Acting siRNA Pathway	284
15.3.3 The Natural-Antisense siRNA Pathway	285
15.3.4 The Repeat-Associated siRNA/RNA-Directed DNA Methylation Pathways	285
15.4 RNA Silencing as an Antiviral Defence Mechanism	287
15.5 Current Applications of RNA Silencing Strategies to Alter Plant Development	289
15.6 Concluding Remarks	290
References	291
16 DNA Methylation: a Dynamic Regulator of Genome Organization and Gene Expression in Plants	295
E.J. Finnegan	
16.1 Introduction	295
16.2 Mapping DNA Methylation	296
16.2.1 Technological Advances in Mapping Methylated Cytosine	296
16.2.2 High-Resolution Maps of DNA Methylation in the <i>Arabidopsis</i> Genome	298
16.3 Methylation Patterns Are the Balance Between Methyltransferase and Demethylase Activities	299
16.3.1 DNA Methyltransferases	299
16.3.2 Chromatin-Modifying Proteins Are Essential for DNA Methylation	302
16.3.3 DNA Demethylases	303
16.4 Targeting DNA Methylation	307
16.5 Interplay Between DNA Methylation and Chromatin Modifications	309
16.5.1 Heterochromatin Exists in a Self-Reinforcing Silencing Loop	309
16.5.2 A Putative Histone Demethylase Prevents the Spread of DNA Methylation	310
16.5.3 DNA Methyl-Binding Proteins Mediate the Interplay Between DNA Methylation and Chromatin Modification	310
16.5.4 Ubiquitination of Histone H2B Prevents DNA Methylation	311
16.6 Genome Stability Is Mediated by CpG Methylation	312
16.7 DNA Methylation Regulates Genes During Development and in Response to External Stimuli	313
16.7.1 Imprinting	313
16.7.2 Response to the Environment	314
16.8 Conclusions	315
References	316

17 Molecular Mechanisms in Epigenetic Regulation of Plant Growth and Development	325
A. Berr and W.H. Shen	
17.1 Introduction	325
17.2 Vernalization and Flowering Time	325
17.2.1 Histone Methylation in <i>FLC</i> Activation	326
17.2.2 Histone Methylation in <i>FLC</i> Repression	328
17.2.3 Regulation of Flowering by Histone Acetylation	329
17.2.4 ATP-Dependent Chromatin-Remodelling Complexes in Flowering Time Control	330
17.2.5 RNAi in Flowering Time Control	330
17.3 Parental Imprinting and Seed Development	331
17.3.1 The Maternally Expressed <i>FWA</i> , <i>FIS2</i> and <i>MEA</i> Alleles ..	331
17.3.2 The Paternally Expressed <i>PHE1</i> Allele	333
17.3.3 Genomic Imprinting in Maize	334
17.4 Chromatin in Stem Cell Maintenance	334
17.4.1 SAM	335
17.4.2 RAM	336
17.5 Chromatin in Plant Stress Responses	336
17.5.1 Histone Acetylation in Stress Responses	336
17.5.2 Chromatin-Remodelling Factors in Stress Responses	337
17.6 Perspectives	338
References	338
18 Activation Tagging for Gain-of-Function Mutants	345
N. Marsch-Martínez and A. Pereira	
18.1 Introduction	345
18.1.1 Importance of Mutants to Study Development	345
18.1.2 Phenotype Gap—the Lack of Mutant Phenotypes	346
18.1.3 Activation Tagging for Gain-of-Function Mutants	347
18.2 Genes that Modulate Development Discovered by Activation Tagging	350
18.2.1 Genes Involved in Hormonal Biosynthesis or Signaling that Affect Development	350
18.2.2 Integration of Environmental Cues Modulating Developmental Pathways	354
18.2.3 Meristem, Embryo, and Organ Development	356
18.3 Transcription Factors Regulating Secondary Metabolic Pathways	359
18.4 Activation Tagging Genes that Confer Resistance to Biotic and Abiotic Stresses	360
18.4.1 Genes Conferring Resistance to Pathogens	360
18.4.2 Genes Conferring Resistance to Drought	361
18.4.3 Activation Tagging of Genes Involved in Sensing Nutritional Status	362

18.5 Additional Considerations	362
18.5.1 Role of Enhancers	362
18.5.2 Instability and Nonviable Phenotypes	363
18.6 Conclusions	364
References	364
19 Regulatory Mechanisms of Homologous Recombination in Higher Plants	371
K. Osakabe, K. Abe, M. Endo, and S. Toki	
19.1 Introduction	371
19.2 Molecular Mechanism of HR	373
19.2.1 Current Models of HR	374
19.3 Meiotic Recombination in Plants	379
19.3.1 Meiotic Recombination Initiation	379
19.3.2 DSB Processing	379
19.3.3 Strand Invasion	380
19.3.4 Crossover Pathway (Resolution of Double Holliday Junction)	382
19.4 Signal Transduction from DSB to HR Repair	383
19.5 Conclusions	385
References	386
20 Synthetic Promoter Engineering	393
M. Venter and F.C. Botha	
20.1 Introduction	393
20.2 Promoters: Biotechnology Tools Combining Molecular ‘Switch’ and ‘Sensor’ Capabilities	394
20.2.1 The Promoter	394
20.2.2 Spatial and Temporal Control of Transgene Activity in Plants	395
20.2.3 Cauliflower Mosaic Virus 35S: the ‘Workhorse’ Promoter in Plant Biotechnology	396
20.2.4 Hurdles that Necessitate Promoter Modification	397
20.3 Synthetic Promoters: Refinement of <i>cis</i> -Regulatory Architecture Leads to Targeted Inducibility and High-Level Expression of Single or Multiple Transgenes	398
20.3.1 <i>cis</i> -Motif Context Modified: the Centre for Synthetic Promoter Engineering	399
20.3.2 Two-Component Transactivated Gene Switches: Promising Systems for Flexible Transgene Expression	404
20.4 The Way Forward: Systematic Engineering and Integration Leads to Accurate Design	407
References	409
Index	415