Contents

Phy	Physiological Sensor Signals Analysis to Represent Cases			
in a Case-Based Diagnostic System				
Shai	hina Begi	um, Mobyen Uddin Ahmed, Peter Funk		
1	Introd	luction		
2	Application Domain: Stress			
	2.1	Physiological Parameters to Measure Stress		
3	Methods and Approaches			
	3.1	Case-Based Reasoning		
	3.2	Fuzzy Logic		
	3.3	Fast Fourier Transformation		
	3.4	Sensitivity and Specificity Analysis		
4	Knowledge-Based Stress Diagnostic System			
	4.1	Data Collection		
	4.2	Feature Extraction		
	4.3	Feature Extraction from Finger Temperature Sensor		
		Signals		
5	Evalu	ation		
6	Concl	lusions		
Refe	erences .			
		er Histological Image Classification with Multiple		
		d Random Subspace Classifier Ensemble		
Yung		ıng, Bailing Zhang, Wenjin Lu		
1		luction		
2	Image	Image Dataset		
3	Feature Extraction			
	3.1	Curvelet Transform for Breast Cancer Histological		
		Image		
	3.2	Features Extracted from Gray Level Co-occurrence		
		Matrix		

X	Contents						
		3.3	Completed Local Binary Patterns for Texture				
			Description	30			
		3.4	Combined Feature	32			
	4	Rando	om Subspace Ensemble of Neural Networks	32			
		4.1	Random Subspace Ensemble and Multi-layer				
			Perceptron	33			
		4.2	Theoretical Analysis of the Ensemble Classifier	34			
	5	Exper	iments and Results	36			
	-	5.1	Evaluation of Individual Classifiers	37			
		5.2	Evaluation of MLP Random Subspace Ensemble	38			
	6	Concl	usion	40			
				41			
	11011						
3	Ima	ge Proce	essing and Reconstruction of Cultured Neuron				
	Skel	etons		43			
	Don	ggang Yu	ı, Tuan D. Pham, Jesse S. Jin, Suhuai Luo, Hong Yan,				
	Den	is I. Cran	ne				
	1	Introd	luction	44			
	2	Segme	entation of Cultured Neurons Using Logical Analysis				
		of Gre	ey and Distance Difference	44			
		2.1	Neuronal Cell Culture and Image Acquisition	48			
		2.2	Logical Level Technique	48			
		2.3	Logical Level Technique with Difference Analysis				
			of Grey Region	49			
		2.4	Use of Filtering Window with Constrained				
			Condition	52			
		2.5	Experiment Results	54			
		2.6	Discussion	55			
	3	Recor	nstruction and Extraction of Neuron Skeletons	62			
	-	3.1	Smoothing of Neuron Skeletons	62			
		3.2	Reconstruction of Neuron Skeletons	63			
		3.3	Analysis and Calculation of Reconstructed Neuron				
		5.5	Skeletons	68			
	4	Exper	riments and Conclusion	72			
		References					
	11011	i ciicos .					
4	Pro	tein Stru	ecture Prediction: Are We There Yet?	79			
	Ashi	Ashish Runthala, Shibasish Chowdhury					
		Abbreviations					
	1		luction	80			
	2	CASF)	81			
	3		in Modelling Algorithms	83			
		3.1	ab-initio Approach	83			
		3.2	Comparative Modelling	87			

			Contents	XI
	4	Predicting New Folds		105
	5	Applications		
	6	Future Research Directions		
	7	Conclusion		
	•	erences		
		pendix of Computational Methods		
5	Text	t Mining for Neuroscience: A Co-morbidity Case S	tudy	117
	Chri	istopher C. Lapish, Naveen Tirupattur, Snehasis Mukh	opadhyay	
	1	Introduction		117
	2	Background Literature		119
	3	Methodology		
	4	Results and Discussion		
		4.1 Feasibility- Application across Three New	uroscience	
		Domains		123
		4.2 Alcoholism and Schizophrenia Co-morbio	dity	129
	5	Conclusions		133
	Refe	erences		134
6		oust Algorithmic Detection of Cardiac Pathologies		
		iods of RR Data		137
	Vale	eriy V. Gavrishchaka, Olga V. Senyukova		
	1	Introduction		137
	2	Importance and Challenges of HRV-Based Cardiac	Diagnostics	
		from Short RR Time Series		139
	3	Generic Framework for the Discovery of Robust M	ulti-component	
		Indicators	. ,	143
	4	Meta-indicators for HRV-Based Diagnostics		145
	5	Meta-classifiers for Multiple Abnormality Detection	on	147
	6	Diagnostics of Complex and Rare Events		149
	7	Conclusions		152
	Refe	erences		152
_	G4	r P' C Th 4 4		155
7		dies on Five Senses Treatment		155
		aka Sato, Tiejun Miao, Mayumi Oyama-Higa		156
	1	Introduction		
	2	Experiment Method		157
		2.1 Experiment 1		
	2	2.2 Experiment 2		
	3	Analysis Method		
		3.1 Chaos Analysis of Time Series		
		3.2 Recurrence Quantitative Analysis		
	4	Results		
		4.1 Results of Chaos Analysis of Voice		
		4.2 Results of RQA Analysis		
		4.3 Chaos and Power Spectrum in Scalp EEG		163

		4.4	Lyapunov Exponent Distribution over Scalp EEG	166
		4.5	Changes of Plethysmogram in Relation to EEG	168
	5	Case S	Study	169
		5.1	Method of Five Senses Therapy	169
		5.2	Patients and Study Design	171
		5.3	Result of Therapy	172
	6	Discus	ssion and Conclusion	173
	Refe	erences		174
8	Fuz	zy Know	ledge-Based Subspace Clustering for Life Science Data	
O		Analysis		
		•	g, Tuan D. Pham, Xiuping Jia, Donald Fraser	177
	1		uction	177
	2		ubspace Clustering	181
	-	2.1	FWSC Algorithms	182
		2.2	EWSC Algorithms	183
	3		dditive Measures and Choquet Integral	185
		3.1	Fuzzy Measures	185
		3.2	Signed Fuzzy Measures	187
		3.3	The Choquet Integral	187
	4		ace Clustering-Based Choquet Integral	188
	•	4.1	Framework for FISC	189
		4.2	Framework for PFISC	193
	5	Exper	imental Results	198
	-	5.1	Analysis of Feature Interaction	202
		5.2	Performance Evaluation	206
	6	Concl	usions	208
	Ref	erences .		209
Au	thor l	Index		215