

Contents

Part I General Aspects of Bioenergetics

1	Introduction	3
1.1	Definition of the Term “Bioenergetics” and Some Milestones of its History	3
1.2	Bioenergetics in the System of Biological Sciences	5
1.3	Laws of Bioenergetics	9
1.4	Evolution of Bioenergetic Mechanisms	13
1.4.1	Adenosine Triphosphate	14
1.4.2	Hypothesis of Adenine-Based Photosynthesis	15
1.4.3	Reserve Energy Sources and Glycolysis	19
1.4.4	Proton Channels and H^+ -ATPase as Means to Prevent Glycolysis-Induced Acidification of the Cell	21
1.4.5	Bacteriorhodopsin-Based Photosynthesis as the Primordial Mechanism of Visible Light Energy Transduction	22
1.4.6	Chlorophyll-Based Photosynthesis	23
1.4.7	Respiratory Mechanism of Energy Supply	25
	References	27

Part II Generators of Proton Potential

2	Chlorophyll-Based Generators of Proton Potential	31
2.1	Light-Dependent Cyclic Redox Chain of Purple Bacteria	32
2.1.1	Main Components of Redox Chain and Principle of Their Functioning	33
2.1.2	Reaction Center Complex	36
2.1.3	$CoQH_2$: Cytochrome <i>c</i> -Oxidoreductase	49

2.1.4	Ways to Use $\Delta\bar{\mu}_{\text{H}^+}$ Generated by the Cyclic Photoredox Chain	52
2.2	Noncyclic Photoredox Chain of Green Bacteria	53
2.3	Noncyclic Photoredox Chain of Chloroplasts and Cyanobacteria	55
2.3.1	Principle of Functioning	55
2.3.2	Photosystem 1	58
2.3.3	Photosystem 2	61
2.3.4	Cytochrome <i>b</i> ₆ <i>f</i> Complex	63
2.3.5	Fate of $\Delta\bar{\mu}_{\text{H}^+}$ Generated by the Chloroplast Photosynthetic Redox Chain	66
	References	68
3	Organotrophic Energetics	71
3.1	Substrates of Organotrophic Energetics	71
3.2	Short Review of Carbohydrate Metabolism	71
3.3	Mechanism of Substrate Phosphorylation	75
3.4	Energetic Efficiency of Fermentation	79
3.5	Carnosine	82
	References	85
4	The Respiratory Chain	87
4.1	Principle of Functioning	87
4.2	NADH:CoQ-Oxidoreductase (Complex I)	92
4.2.1	Protein Composition of Complex I	93
4.2.2	Cofactor Composition of Complex I	94
4.2.3	Subfragments of Complex I	95
4.2.4	Inhibitors of Complex I	96
4.2.5	Possible Mechanisms of $\Delta\bar{\mu}_{\text{H}^+}$ Generation by Complex I	97
4.3	CoQH ₂ :Cytochrome <i>c</i> -Oxidoreductase (Complex III)	102
4.3.1	Structural Aspects of Complex III	102
4.3.2	X-Ray Analysis of Complex III	104
4.3.3	Functional Model of Complex III	106
4.3.4	Inhibitors of Complex III	108
4.4	Cytochrome <i>c</i> Oxidase (Complex IV)	108
4.4.1	Cytochrome <i>c</i>	109
4.4.2	Cytochrome <i>c</i> Oxidase: General Characteristics	110
4.4.3	X-Ray Analysis of Complex IV	112
4.4.4	Electron Transfer Pathway in Complex IV	113
4.4.5	Mechanism of $\Delta\bar{\mu}_{\text{H}^+}$ Generation by Cytochrome <i>c</i> Oxidase	115
4.4.6	Inhibitors of Cytochrome Oxidase	116
	References	117

5	Structure of Respiratory Chains of Prokaryotes and Mitochondria of Protozoa, Plants, and Fungi	119
5.1	Mitochondrial Respiratory Chain of Protozoa, Plants, and Fungi	120
5.2	Structure of Prokaryotic Respiratory Chains	122
5.2.1	Respiratory Chain of <i>Paracoccus denitrificans</i>	123
5.2.2	Respiratory Chain of <i>Escherichia coli</i>	124
5.2.3	Redox Chain of <i>Ascaris</i> Mitochondria: Adaptation to Anaerobiosis	127
5.2.4	Respiratory Chain of <i>Azotobacter vinelandii</i>	128
5.2.5	Oxidation of Substrates with Positive Redox Potentials by Bacterial Respiratory Chains	129
5.2.6	Respiratory Chain of Cyanobacteria	131
5.2.7	Respiratory Chain of Chloroplasts	132
5.3	Electron Transport Chain of Methanogenic Archaea	132
5.3.1	Oxidative Phase of Methanogenesis	134
5.3.2	Reducing Phase of Methanogenesis	135
	References	137
6	Bacteriorhodopsin	139
6.1	Principle of Functioning	139
6.2	Structure of Bacteriorhodopsin	141
6.3	Bacteriorhodopsin Photocycle	144
6.4	Light-Dependent Proton Transport by Bacteriorhodopsin	145
6.5	Other Retinal-Containing Proteins	149
6.5.1	Halorhodopsin	149
6.5.2	Distribution of Bacteriorhodopsin and its Analogs in Various Microorganisms	151
6.5.3	Sensory Rhodopsin and Phoborhodopsin	151
6.5.4	Animal Rhodopsin	153
	References	155

Part III $\Delta\bar{\mu}_{\text{H}^+}$ Consumers

7	$\Delta\bar{\mu}_{\text{H}^+}$-Driven Chemical Work	159
7.1	H^+ -ATP Synthase	159
7.1.1	Subunit Composition of H^+ -ATP Synthase	159
7.1.2	Three-Dimensional Structure and Arrangement in the Membrane	161
7.1.3	ATP hydrolysis by Isolated Factor F_1	167
7.1.4	Synthesis of Bound ATP by Isolated Factor F_1	169
7.1.5	F_o -Mediated H^+ Conductance	169

7.1.6	Possible Mechanism of Energy Transduction by F_0F_1 -ATP Synthase	172
7.1.7	H^+ /ATP Stoichiometry	174
7.2	H^+ -ATPases as Secondary $\Delta\bar{\mu}_{H^+}$ Generators	176
7.2.1	F_0F_1 -Type H^+ -ATPases	177
7.2.2	V_0V_1 -Type H^+ -ATPases	179
7.2.3	E_1E_2 -Type H^+ -ATPases	180
7.2.4	Interrelations of Various Functions of H^+ -ATPases	182
7.3	H^+ -Pyrophosphate Synthase (H^+ -Pyrophosphatase)	183
7.4	H^+ -Transhydrogenase	186
7.5	Other Systems of Reverse Transfer of Reducing Equivalents	190
	References	191
8	$\Delta\bar{\mu}_{H^+}$-Driven Mechanical Work: Bacterial Motility	195
8.1	$\Delta\bar{\mu}_{H^+}$ Powers the Flagellar Motor	196
8.2	Structure of the Bacterial Flagellar Motor	197
8.3	A Possible Mechanism of the H^+ -motor	200
8.4	$\Delta\bar{\mu}_{H^+}$ -Driven Movement of Non-Flagellar Motile Prokaryotes and Intracellular Organelles of Eukaryotes	202
8.5	Motile Eukaryote: Prokaryote Symbionts	204
	References	205
9	$\Delta\bar{\mu}_{H^+}$-Driven Osmotic Work	207
9.1	Definition and Classification	207
9.2	$\Delta\Psi$ As Driving Force	208
9.3	ΔpH As Driving Force	210
9.4	Total $\Delta\bar{\mu}_{H^+}$ as Driving Force	211
9.5	$\Delta\bar{\mu}_{H^+}$ -Driven Transport Cascades	213
9.6	Carnitine: An Example of a Transmembrane Group Carrier	214
9.7	Some Examples of $\Delta\bar{\mu}_{H^+}$ -Driven Carriers	217
9.7.1	<i>Escherichia coli</i> Lactose, H^+ -Symporter	218
9.7.2	Mitochondrial ATP/ADP-Antiporter	221
9.8	Role of $\Delta\mu_{H^+}$ in Transport of Macromolecules	224
9.8.1	Transport of Mitochondrial Proteins: Biogenesis of Mitochondria	225
9.8.2	Transport of Bacterial Proteins	226
9.8.3	Role of $\Delta\Psi$ in Protein Arrangement in the Membrane	227
9.8.4	Bacterial DNA Transport	227
	References	228

10	$\Delta\bar{\mu}_{\text{H}^+}$ as Energy Source for Heat Production	231
10.1	Three Ways of Converting Metabolic Energy into Heat	231
10.2	Thermoregulatory Activation of Free Respiration in Animals	232
10.2.1	Brown Fat	232
10.2.2	Skeletal Muscles	236
10.3	Thermoregulatory Activation of Free Respiration in Plants	240
	References	241

Part IV Interaction and Regulation of Proton Potential Generators and Consumers

11	Regulation, Transmission, and Buffering of Proton Potential	245
11.1	Regulation of $\Delta\bar{\mu}_{\text{H}^+}$	245
11.1.1	Alternative Functions of Respiration	245
11.1.2	Regulation of Flows of Reducing Equivalents Between Cytosol and Mitochondria	248
11.1.3	Interconversion of $\Delta\Psi$ and ΔpH	249
11.1.4	Relation of $\Delta\bar{\mu}_{\text{H}^+}$ Control to the Main Regulatory Systems of Eukaryotic Cells	250
11.1.5	Control of $\Delta\bar{\mu}_{\text{H}^+}$ in Bacteria	251
11.2	Energy Transmission Along Membranes in the Form of $\Delta\bar{\mu}_{\text{H}^+}$	252
11.2.1	General Remarks	252
11.2.2	Lateral Transmission of $\Delta\bar{\mu}_{\text{H}^+}$ Produced by Light-Dependent Generators in Halobacteria and Chloroplasts	253
11.2.3	Trans-Cellular Power Transmission Along Cyanobacterial Trichomes	253
11.2.4	Structure and Functions of Filamentous Mitochondria and Mitochondrial Reticulum	254
11.3	Buffering of $\Delta\bar{\mu}_{\text{H}^+}$	265
11.3.1	Na^+/K^+ Gradients as a $\Delta\bar{\mu}_{\text{H}^+}$ -Buffer in Bacteria	265
11.3.2	Other $\Delta\bar{\mu}_{\text{H}^+}$ -Buffering Systems	268
	References	269

Part V The Sodium World

12	$\Delta\bar{\mu}_{\text{Na}^+}$ Generators	275
12.1	Na^+ -Motive Decarboxylases	275
12.2	Na^+ -Translocating NADH:Quinone-Oxidoreductase	277
12.2.1	Primary Structure of Subunits of Na^+ -Translocating NADH:Quinone Oxidoreductase	277

12.2.2	Na^+ -NQR Prosthetic Groups	279
12.3	Na^+ -Motive Methyltransferase Complex from Methanogenic Archaea	280
12.4	Na^+ -Motive Formylmethanofuran Dehydrogenase from Methanogenic Archaea	281
12.5	Secondary $\Delta\bar{\mu}_{\text{Na}^+}$ Generators: Na^+ -Motive ATPases and Na^+ -Pyrophosphatase	282
12.5.1	Bacterial Na^+ -ATPases	282
12.5.2	Animal Na^+/K^+ -ATPase and Na^+ -ATPase	283
12.5.3	Na^+ -Motive Pyrophosphatase	284
	References	285
13	Utilization of $\Delta\bar{\mu}_{\text{Na}^+}$ Produced by Primary $\Delta\bar{\mu}_{\text{Na}^+}$ Generators	287
13.1	Osmotic Work Supported by $\Delta\bar{\mu}_{\text{Na}^+}$	287
13.1.1	Na^+ , Metabolite-Symporters	287
13.1.2	Na^+ Ions and Regulation of Cytoplasmic pH	288
13.2	Mechanical Work	289
13.3	Chemical Work	291
13.3.1	$\Delta\bar{\mu}_{\text{Na}^+}$ -Driven ATP Synthesis in Anaerobic Bacteria	291
13.3.2	$\Delta\bar{\mu}_{\text{Na}^+}$ Consumers Performing Chemical Work in Methanogenic Archaea	293
	References	294
14	Relations Between the Proton and Sodium Worlds	297
14.1	How Often is the Na^+ Cycle Used by Living Cells?	297
14.2	Probable Evolutionary Relationships of the Proton and Sodium Worlds	298
14.3	Membrane-Linked Energy Transductions Involving Neither H^+ Nor Na^+	300
	References	302
Part VI Mitochondrial Reactive Oxygen Species and Mechanisms of Aging		
15	Concept of Aging as a Result of Slow Programmed Poisoning of an Organism with Mitochondrial Reactive Oxygen Species	305
15.1	Nature of ROS and Paths of their Formation in the Cell	306
15.2	How Do Living Systems Protect Themselves from ROS?	309
15.2.1	Antioxidant Compounds	309
15.2.2	Decrease in Intracellular Oxygen Concentration	309
15.2.3	Decrease in ROS Production by the Respiratory Chain	312
15.2.4	Mitoptosis	315

15.2.5	Apoptosis	318
15.2.6	Necrosis	320
15.2.7	Phenoptosis	322
15.3	Biological Function of ROS	323
15.4	Aging as Slow Phenoptosis Caused by Increase in mROS Level	326
15.4.1	Definition of the Term “Aging” and a Short Historical Overview of the Problem	326
15.4.2	Phenoptosis of Organisms that Reproduce Only Once	329
15.4.3	Can Aging be a Slow Form of Phenoptosis?	333
15.4.4	Mutations that Prolong Lifespan	336
15.4.5	ROS and Aging	339
15.4.6	Naked Mole-Rat	340
15.4.7	Aging Program: Working Hypothesis	342
15.4.8	Paradox of Protein p53	343
15.4.9	Arrest of Age-Dependent Increase of Mitochondrial ROS as a Possible Way to Slow the Aging Program	344
	References	346
16	Possible Medical Applications of Membrane Bioenergetics: Mitochondria-Targeted Antioxidants as Geroprotectors	355
16.1	SkQ Decelerates the Aging Program	355
16.2	Comparison of Effects of Food Restriction and SkQ	372
16.3	From <i>Homo sapiens</i> to <i>Homo sapiens liberatus</i>	376
16.4	Conclusions	377
	References	378
Appendix 1: Energy, Work, and Laws of Thermodynamics	383	
Appendix 2: Prosthetic Groups and Cofactors	393	
Appendix 3: Inhibitors of Oxidative Phosphorylation	403	
Appendix 4: Plant Hormones	407	
Appendix 5: Mitochondria-Targeted Antioxidants and Related Penetrating Compounds	409	
Appendix 6: Mitochondria-Targeted Natural Rechargeable Antioxidant	413	

Appendix 7: Key Participants of the Project “Practical Application of Penetrating Cations”	417
References	421
Author Index	423
Subject Index	427
Index of Organisms	435