Contents

I	Sou	nd Sources	1
2	Mor 2.1	Transformation of Line Source Results to Point Source Results	3
3	Mir 3.1 3.2	Line Source Above an Absorbent Plane	5 5
	3.3 3.4	a Line Source	10 15
	3.5	Absorbent Plane	17 20
4	Mod	lified Mirror Sources	25
5	Har	d–Soft Superposition	33
6			
6	Cu b 6.1	Point Source in a Cube with Hard Walls on All Sides, Classical	39
6			39 40 45
6	6.1	Point Source in a Cube with Hard Walls on All Sides, Classical Solution	40
7	6.16.26.3	Point Source in a Cube with Hard Walls on All Sides, Classical Solution	40 45
	6.1 6.2 6.3 Zon 7.1 7.2 7.3	Point Source in a Cube with Hard Walls on All Sides, Classical Solution	40 45 59 61 61 71
7	6.1 6.2 6.3 Zon 7.1 7.2 7.3	Point Source in a Cube with Hard Walls on All Sides, Classical Solution	40 45 59 61 61 71

x Contents

	8.3	Reverberant Room with Transversal Zones	121		
	8.4	Reverberation in the Room with Transversal Zones	129		
		8.4.1 Decay Exponent from γ_{m_z} and Phase Velocity c_{ph,m_z}	129		
		8.4.2 Decay Exponent from γ_m and Sound Velocity $c_0 \dots$	135		
		8.4.3 Decay Exponent from γ_{m_z} and Sound Velocity c_0 but			
		without $m_z = 0 \dots$	137		
		8.4.4 Decay Exponent from ε_m	138		
		8.4.5 "Twittering" Reverberation	142		
	8.5	Stationary Field with Reduced Absorber Area	151		
9	Flat	Rooms	157.		
	9.1				
	9.2	Scattering Cylinder Excited by a Line Source	158 161		
	9.3	Rectangular Flat Room with Appended Chamber	163		
	9.4	Rectangular Flat Room with Stage Room	170		
	•	•			
10		ge Rooms	177		
	10.1	Wedge Room with Hard Flanks	177		
		10.1.1 Scattering of a Cylindrical Wave	178		
		10.1.2 Scattering of a Plane Wave	181		
	10.2	Wedge Modes with Absorbent Flanks	185		
		10.2.1 Numerical Solution of the Eigen Value Equation	187		
		10.2.2 Azimuthal Eigen Values	189		
		10.2.3 Approximation to the Wave Equation	193		
		10.2.4 Fictive Modes	194		
		10.2.5 The Remainder $r(\vartheta)$ as Superposition of Fictive Modes	197		
		10.2.6 Separate Solution for the Remainder $r(\rho)$ of the Wave	400		
		Equation	199		
	10.3	Wedge Room with Stepped Absorbent Flank	203		
		10.3.1 Convergent Wedge	205		
		10.3.2 Divergent Wedge	207		
	10.4	8	214		
		10.4.1 Excitation by a Line Source Q	215		
		10.4.2 Excitation by a Plane Wave	222		
	10.5	Numerical Results	223		
11	Vau	lt Rooms	227		
	11.1	Barrel Arch	227		
	11.2				
	11.3		240		
	11.4		246		
	11.5	Elliptical Cylinder with Point Source	257		
12	Cur	ola-Shaped Room	263		
14	∨up	via-snapeu Koviii	203		

Contents xi

13	Mirror Source Method, Rules		
	13.1	Field Angle of a Mirror Source	281
	13.2	Some Special Source Positions	284
	13.3	Criteria for Truncation of the Mirror Source Generation	287
	13.4	Computing Blocks in the Mirror Source Procedure	288
	13.5	How Does the Conventional Mirror Source Procedure Work?.	289
	13.6	Mirror Source Algorithm in Concave Rooms	292
	13.7 13.8	Supplementary Change of the Field Point P	295 296
14		netrical Subtasks and Admittances	299
	14.1	Geometrical Subtasks in 3D	299
	14.2	Supports for the Estimation of Admittances	309
15		or Source Fields in Concave Rooms	319
	15.1	A "Cake Slice" Concert Hall	319
	15.2	A "Tureen" Shaped Stadium	328
	15.3	Exterior Field	333
16	Soun	d Radiation of a Cooling Tower	337
	16.1	Contributions in the Immission Point	344
17		rberation with Mirror Sources	347
	17.1	Cut-off Models	347
	17.2	Cut-off Reverberation in a "Cake Slice" Concert Hall	350
	17.3	"Squared" Cut-off Reverberation	356
	17.4	Impulse-Reverberation	359
	17.5	Reverberant Room with Mirror Sources	364 368
		17.5.1 Cut-off Reverberation	374
	17.6	Absorption in the Reverberant Room with Mirror Sources	376
	17.7	Incoherent Absorption with Mirror Sources	380
	17.8	Absorber Only on a Partial Area of the Floor	382
	17.9	Final Remarks About the Mirror Source Reverberation	389
18	Mirror Sources in Convex Rooms		
	18.1	Mirror Source Algorithm in Convex Rooms	395
	18.2	Shading by a Screen	397
	18.3	An Opera House with Orchestra Pit	400
19	Mod	ified Mirror Source Procedure	413
20	Mirror Sources and Corner Sources		
	20.1	Combination of Corner Fields to the Room Field	421
	20.2	Mirror Sources of a Corner Room and Addition Theorem	423
	20.3	Reflection of a Corner Source at an Opposite Wall	425
	20.4	The Case of Nearly Anti-Parallel Flanks	427
	20.5	Special Case of Anti-Parallel Flanks	428

xii Contents

21	Mirror Sources Combined with the Principle of Symmetry-				
	Supe	rposition	n (PSS)	435	
	21.1	Mirror	Sources and Symmetry-Superposition with		
			metrical Absorbers	445	
	21.2	A More	e Precise Solution for Unsymmetrical Flanks with		
			S	448	
	21.3	Interim	Résumé of the Combination of Mirror Sources		
		and PS	S	451	
22	M:	an Carre	and Wadaa Chana Field	455	
22	22.1		ces and Wedge Space Field	458	
	22.1		ing of Point Sources from Scattering of Line Sources.	459	
	22.2			439	
	22.3	_	Space with Ideal Flanks: Mode Analysis	460	
		22.3.1	One-sided Angular Coordinate		
		22.3.2	Centred Angular Coordinate	465	
23	Corn	er Scatt	ering from Literature	467	
45	23.1		ing at Corners with "Ideal" Flanks According to	407	
	23.1		ettinger	469	
		23.1.1	Integral Formulation for a Line Source	470	
		23.1.2	Series Expansion for a Line Source	473	
		23.1.2	Special Case $\vartheta_0 = \pi/m$; $m > 0$, Integer	479	
		23.1.4	Field in a Different Integral Form for Line Source	7/2	
		23.1.4	and Equal Flanks	480	
		23.1.5	Field in Integral Form for Line Source and Mixed	700	
		23.1.3	Flanks	484	
	23.2				
			ing at a Wedge with "Ideal" Flanks After Herglotz	488 492	
	23.3	23.3.1	Generalisation to Solutions for $\theta_0 = \pi/\alpha$; $\alpha > 0$	494	
	23.4		ing at a Wedge with "Ideal" Flanks After Tuzhilin	499	
	23.5	· · · · · · · · · · · · · · · · · · ·			
	After Osipov			525	
		23.5.1	Solution $p(r,\varphi)$ as a Series, for Plane Wave,	320	
		23.3.1	Ideal Flanks, and not Too Big $k_0 r \dots \dots$	528	
		23.5.2	Malyuzhinets' Solution for Ideal and for	320	
		23.3.2	Absorbent Flanks	534	
		23.5.3	Expanded Malyuzhinets-Solution for Hard	35-	
		23.3.3	or Absorbent Flanks	538	
		23.5.4	Solution for Soft Flank at $\varphi = -\Phi$ and Finite	330	
		45.5.4	Impedance at $\varphi = +\Phi$	542	
		23.5.5	Solution for a Soft Flank at $\varphi = +\Phi$ and a Finite	342	
		23.3.3	Impedance at $\varphi = -\Phi$	542	
		23.5.6	Approximation for Small $k_0 r$	542 543	
		23.5.6 23.5.7	Approximation for Small $k_0 r$ and One Flank Soft	543 545	
		45.5.7	Approximation for small κ_0 and the Flank soft	342	

Contents xiii

		23.5.8	Special Case of a Plane with Impedance Jump		
			i.e. $\Phi = \pi/2$; $\mu = 1 \dots$	545	
		23.5.9	Plane Screen with Impedance Surfaces; i.e.		
			$\Phi = \pi$; and $\Phi_{n,n}$ with $n = 2$; $m = 1$; ("Full Edge" or "Half Plane")	546	
		23.5.10	Asymptotic Expansion of the Field at a Convex		
			Wedge for Large $k_0 r$	546	
		23.5.11	Asymptotic Expansion of the Field at a Convex		
			Wedge for Large k_0r and Grazing Sound Incidence	550	
		23.5.12	Change of the Angular Coordinate from φ , Originated		
			on the Median Plane, to ϑ with Origin on a Flank	550	
24	Shiel	ding by C	Convex Corners or Screens	553	
25	Two-	Dimensio	nal Rooms	557	
	25.1	2D-Root	n	557	
	25.2	Equivale	ent Sources	560	
	25.3	Source A	Angle Φ	562	
	25.4	Walls an	nd Mirror Sources	563	
	25.5	Search fe	or Mirror Sources	566	
	25.6				
	25.7		ration in the Two-Dimensional "Cake Slice"	571	
	25.8		Sources	576	
	25.9	Algorith	m with Mirror and Corner Sources	579	
26	Conc	luding Re	emarks	585	
Lite	eratur	e		587	
Ind	ndev				