

Contents

Foreword *XIX*
Preface *XXI*
List of Contributors *XXV*

PART I Climate Change and Abiotic Stress Factors 1

1	Climate Change and Food Security 3
	<i>R.B. Singh</i>
1.1	Background and Introduction 3
1.2	State of Food Security 6
1.3	Climate Change Impact and Vulnerability 9
1.4	Natural Resources Management 13
1.5	Adaptation and Mitigation 17
1.6	Climate Resilient Agriculture – The Way Forward 18
	References 22
2	Improving Crop Productivity under Changing Environment 23
	<i>Navjot K. Dhillon, Satbir S. Gosal, and Manjit S. Kang</i>
2.1	Introduction 23
2.1.1	Global Environmental Change Alters Crop Targets 28
2.1.2	Crop Productivity 28
2.1.3	Climatic Factors Affecting Crop Production 29
2.1.3.1	Precipitation 29
2.1.3.2	Temperature 29
2.1.3.3	Atmospheric Humidity 30
2.1.3.4	Solar Radiation 30
2.1.3.5	Wind Velocity 30
2.1.4	Plant Genetic Engineering 31
2.1.4.1	Engineering for Herbicide Resistance 32
2.1.4.2	Engineering for Insect Resistance 32
2.1.4.3	Engineering for Disease Resistance 33

2.1.4.4	Engineering for Improving Nutritional Quality	36
2.1.4.5	Engineering for Male Sterility	36
2.1.4.6	Engineering for Molecular Farming/Pharming	37
2.1.4.7	Engineering for Improving Postharvest Traits	37
2.1.4.8	Engineering for Abiotic Stress Tolerance	38
2.1.5	Molecular Breeding	39
2.2	Conclusions	40
	References	40
3	Genetic Engineering for Acid Soil Tolerance in Plants	49
	<i>Sagarika Mishra, Lingaraj Sahoo, and Sanjib K. Panda</i>	
3.1	Introduction	49
3.2	Phytotoxic Effect of Aluminum on Plant System	50
3.2.1	Al-Induced Morphophysiological Changes in Roots	50
3.2.2	Negative Influence of Al on Cytoskeletal Network of Plant Cells	51
3.2.3	Interaction of Al ³⁺ Ions with Cell Wall and Plasma Membrane	52
3.2.4	Oxidative Stress Response upon Al Stress	52
3.3	Aluminum Tolerance Mechanisms in Plants	53
3.3.1	Preventing the Entry of Al into Plant Cell	53
3.3.2	Role of Organic Acids in External and Internal Detoxification of Al	54
3.4	Aluminum Signal Transduction in Plants	55
3.5	Genetic Approach for Development of Al-Tolerant Plants	56
3.6	Transcriptomics and Proteomics as Tools for Unraveling Al Responsive Genes	59
3.7	Future Perspectives	60
	References	61
4	Evaluation of Tropospheric O₃ Effects on Global Agriculture: A New Insight	69
	<i>Richa Rai, Abhijit Sarkar, S.B. Agrawal, and Madhoolika Agrawal</i>	
4.1	Introduction	69
4.2	Tropospheric O ₃ Formation and Its Recent Trend	71
4.2.1	Projected Trends of Ozone Concentrations	74
4.3	Mechanism of O ₃ Uptake	75
4.3.1	Mode of Action	76
4.3.2	O ₃ Sensing and Signal Transduction	76
4.3.3	ROS Detoxification Mechanisms: From Apoplast to Symplast	77
4.3.4	Physiological Responses	80
4.3.4.1	Photosynthesis	80
4.3.5	Cultivar Sensitivity in Relation to Growth and Yield	84
4.4	Looking Through the “-Oomics” at Post-Genomics Era	87
4.4.1	Evolution of Multi-Parallel “-Oomics” Approaches in Modern Biology	87
4.4.2	“-Oomics” Response in Ozone-Affected Crop Plants: An <i>In Vivo</i> Assessment	87

4.4.2.1	Case Studies in Major Crop Plants	88
4.5	Different Approaches to Assess Impacts of Ozone on Agricultural Crops	92
4.6	Tropospheric O ₃ and Its Interaction with Other Components of Global Climate Change and Abiotic Stresses	94
4.6.1	Elevated CO ₂ and O ₃ Interaction	94
4.6.2	O ₃ and Drought Interaction	95
4.6.3	O ₃ and UV-B Interaction	95
4.7	Conclusions	96
	References	97

PART II Methods to Improve Crop Productivity 107

5	Mitogen-Activated Protein Kinases in Abiotic Stress Tolerance in Crop Plants: “-Omics” Approaches	109
	<i>Monika Jaggi, Meetu Gupta, Narendra Tuteja, and Alok Krishna Sinha</i>	
5.1	Introduction	109
5.2	MAPK Pathway and Its Components	112
5.2.1	MAP3Ks	112
5.2.2	MAP2Ks	114
5.2.3	MAPKs	114
5.3	Plant MAPK Signaling Cascade in Abiotic Stress	115
5.3.1	MAPK Cascades under Salt Stress	117
5.3.2	Drought Stress-Induced MAPKs	117
5.3.3	Temperature Stress Response and MAPK Cascades	119
5.3.4	Activation of MAPKs by Oxidative Stress	120
5.3.5	Ozone-Induced MAPKs	121
5.3.6	Wounding-Induced MAPKs	121
5.3.7	MAPKs in Heavy Metal Signaling	122
5.4	Crosstalk between Plant MAP Kinases in Abiotic Stress Signaling	122
5.5	“-Omics” Analyses of Plants under Abiotic Stress	123
5.6	Conclusions and Future Perspectives	127
	Acknowledgments	128
	References	128
6	Plant Growth Promoting Rhizobacteria-Mediated Amelioration of Abiotic and Biotic Stresses for Increasing Crop Productivity	133
	<i>Vasvi Chaudhry, Suchi Srivastava, Puneet Singh Chauhan, Poonam C. Singh, Aradhana Mishra, and Chandra Shekhar Nautiyal</i>	
6.1	Introduction	133
6.2	Factors Affecting Plant Growth	134
6.2.1	Biotic Stress	135
6.2.2	Abiotic Stress	135
6.3	Plant-Mediated Strategies to Elicit Stresses	136

6.3.1	Osmoadaptation	137
6.3.2	Antioxidative Enzyme Production	137
6.3.3	Effect of Stress on Plant Nutrient Uptake	137
6.4	Plant Growth Promoting Rhizobacteria-Mediated Beneficiaries to the Environment	138
6.4.1	PGPR as Abiotic Stress Ameliorating Agent	138
6.4.2	PGPR Action against Multiple Pathogens	139
6.4.3	Determinants of PGPR Colonization in Stressed Environment	140
6.4.4	PGPR-Mediated Induction of Defense Mechanism	143
6.4.5	Modulation of Plant Genes through Bacterial Intervention	144
6.5	PGPR-Based Practical Approaches to Stress Tolerance	145
6.5.1	Development and Commercialization of PGPRs: Approaches and Limitations	145
6.5.2	Implications of Bacterial Genes for Transgenic Development	146
6.6	Conclusions	147
	References	147
7	Are Viruses Always Villains? The Roles Plant Viruses May Play in Improving Plant Responses to Stress	155
	<i>Stephen J. Wylie and Michael G.K. Jones</i>	
7.1	Introduction	155
7.2	Viruses Are Abundant and Diverse	156
7.3	Wild Versus Domesticated	156
7.4	New Encounters	157
7.5	Roles for Viruses in Adaptation and Evolution	158
7.6	Conclusions	160
	References	160
8	Risk Assessment of Abiotic Stress Tolerant GM Crops	163
	<i>Paul Howles and Joe Smith</i>	
8.1	Introduction	163
8.2	Abiotic Stress	164
8.3	Abiotic Stress Traits are Mediated by Multiple Genes	165
8.4	Pleiotropy and Abiotic Stress Responses	167
8.5	General Concepts of Risk Analysis	168
8.6	Risk Assessment and Abiotic Stress Tolerance	169
8.6.1	Choice of Comparator	171
8.6.2	Production of an Allergenic or Toxic Substance	171
8.6.3	Invasiveness and Weediness	172
8.6.4	Pleiotropic Effects	173
8.6.5	Gene Transfer to Another Organism	175
8.7	Abiotic Stress Tolerance Engineered by Traditional Breeding and Mutagenesis	176
8.8	Conclusions	177
	Acknowledgments	177
	References	177

9	Biofertilizers: Potential for Crop Improvement under Stressed Conditions	183
	<i>Alok Adholeya and Manab Das</i>	
9.1	Introduction	183
9.2	What Is Biofertilizer?	184
9.3	How It Differs from Chemical and Organic Fertilizers	184
9.4	Type of Biofertilizers	184
9.5	Description and Function of Important Microorganisms Used as Biofertilizers	187
9.5.1	Rhizobia	187
9.5.2	<i>Azotobacter</i> and <i>Azospirillum</i>	187
9.5.3	Blue-Green Algae or Cyanobacteria	188
9.6	Phosphate Solubilizing Bacteria	189
9.7	Plant Growth Promoting Rhizobacteria	189
9.8	Mycorrhiza	189
9.9	Inoculation of Biofertilizers	190
9.9.1	Carrier Materials for Biofertilizers	190
9.10	Potential Role of Various Biofertilizers in Crop Production and Improvement	192
9.10.1	Bacterial Biofertilizers	192
9.10.2	Fungal Biofertilizers	194
9.11	Conclusions	195
	References	195

PART III Species-Specific Case Studies 201

Section IIIA Graminoids 201

10	Rice: Genetic Engineering Approaches for Abiotic Stress Tolerance – Retrospects and Prospects	203
	<i>Salvinder Singh, M.K. Modi, Sarvajeet Singh Gill, and Narendra Tuteja</i>	
10.1	Introduction	204
10.2	Single Action Genes	204
10.2.1	Osmoprotectants	204
10.2.2	Late Embryogenesis Abundant Proteins	207
10.2.3	Detoxifying Genes	208
10.2.4	Multifunctional Genes for Lipid Biosynthesis	210
10.2.5	Heat Shock Protein Genes	211
10.2.6	Regulatory Genes	212
10.2.7	Transcription Factors	212
10.2.8	Other Transcription Factors	215
10.2.9	Signal Transduction Genes	216
10.2.10	Functional Proteins	217
10.2.11	ROS Scavenging System	217
10.2.12	Sodium Transporters	218
10.3	Choice of Promoters	220

10.4	Physiological Evaluation of Stress Effect	221
10.5	Means of Stress Impositions, Growth Conditions, and Evaluations	222
10.6	Adequate Protocols to Apply Drought and Salinity Stress	223
10.7	Conclusions	224
	References	225
11	Rice: Genetic Engineering Approaches to Enhance Grain Iron Content	237
	<i>Salvinder Singh, D. Sudhakar, and M.K. Modi</i>	
11.1	Introduction	237
11.2	Micronutrient Malnutrition	237
11.2.1	Approaches to Decrease Micronutrient Deficiencies and/or Malnutrition	238
11.2.2	Importance of Iron in Human Physiology	239
11.2.3	Source of Iron for Human Nutrition	239
11.2.4	Approaches to Decrease Micronutrient Deficiencies	240
11.2.5	Pharmaceutical Preparation	241
11.2.6	Disease Reduction	241
11.3	Food Fortification	241
11.4	Biofortification	242
11.4.1	Biofortification through Classical Breeding Approach	243
11.4.2	Biofortification through Genetic Engineering Approach	244
11.4.3	Biofortification by Decreasing Antinutrient Contents	245
11.4.4	Biofortification by Increasing Iron Bioavailability Promoting Compounds	246
11.5	Iron Uptake and Transport in Plants	247
11.5.1	The Reduction Strategy	247
11.5.2	The Chelation Strategy	248
11.5.3	Regulation of the Reduction Strategy	248
11.5.4	Iron Signaling and Sensing in Plants	249
11.5.5	Iron Transport within the Plant	249
11.5.5.1	Intercellular Iron Transport	249
11.5.5.2	Subcellular Iron Transport	250
11.5.5.3	Vacuoles	251
11.5.5.4	Chloroplasts	251
11.5.5.5	Mitochondria	252
11.6	Conclusions	252
	References	253
12	Pearl Millet: Genetic Improvement in Tolerance to Abiotic Stresses	261
	<i>O.P. Yadav, K.N. Rai, and S.K. Gupta</i>	
12.1	Introduction	262
12.2	Drought: Its Nature and Effects	264
12.2.1	Seedling Phase	264
12.2.2	Vegetative Phase	264

12.2.3	Reproductive Phase	265
12.3	Genetic Improvement in Drought Tolerance	265
12.3.1	Conventional Breeding	266
12.3.1.1	Selection Environment	266
12.3.1.2	Selection Criteria	268
12.3.1.3	Yield Improvement	270
12.3.2	Molecular Breeding	273
12.4	Heat Tolerance	274
12.4.1	Tolerance at Seedling Stage	274
12.4.2	Tolerance at Reproductive Stage	275
12.5	Salinity Tolerance	277
	References	279
13	Bamboo: Application of Plant Tissue Culture Techniques for Genetic Improvement of <i>Dendrocalamus strictus</i> Nees	289
	<i>C.K. John and V.A. Parasharami</i>	
13.1	Introduction	289
13.2	Vegetative Propagation	290
13.3	Micropropagation	291
13.4	Genetic Improvement for Abiotic Stress Tolerance	291
13.5	<i>Dendrocalamus strictus</i>	292
13.6	Future Prospects	299
	References	299
Section IIIB Leguminosae 303		
14	Groundnut: Genetic Approaches to Enhance Adaptation of Groundnut (<i>Arachis Hypogaea</i>, L.) to Drought	305
	<i>R.C. Nageswara Rao, M.S. Sheshshayee, N. Nataraja Karaba, Rohini Sreevaths, N. Rama, S. Kumaraswamy, T.G. Prasad, and M. Udayakumar</i>	
14.1	Introduction	306
14.1.1	Importance of Groundnut	306
14.1.2	Origin and Diversity	307
14.1.3	Area, Production, and Productivity	307
14.1.4	Major Abiotic Stresses	307
14.2	Response to Water Deficits at the Crop Level	309
14.2.1	Effects of Water Deficits on Yield	309
14.2.2	Effects of Multiple Water Deficits	309
14.2.3	Effects of Water Deficit at Different Stages of Crop Growth	311
14.2.3.1	Germination and Emergence	311
14.2.3.2	Vegetative Phase	312
14.2.3.3	Reproductive Phase	313
14.2.4	Effects of Water Deficits on Some Physiological Processes	313
14.2.4.1	Water Deficit and Temperature Interaction	314

14.2.4.2	Water Uptake and Plant–Water Relations	315
14.2.4.3	N Fixation	315
14.2.4.4	Photosynthesis and Transpiration	316
14.2.4.5	Partitioning of Dry Matter to Pods and Harvest Index	317
14.2.5	Effects of Water Deficit on Seed Quality	318
14.2.5.1	Protein	318
14.2.5.2	Oil Content and Quality	318
14.2.5.3	Aflatoxin	319
14.3	Some Physiological Mechanisms Contributing to Drought Tolerance in Groundnut	320
14.3.1	Water Extraction Efficiency	321
14.3.2	Transpiration Efficiency	321
14.3.3	Surrogate Measures of TE	322
14.3.4	Epicuticular Wax	324
14.3.5	Survival under and Recovery from Drought	324
14.3.6	Acquired Thermotolerance	325
14.4	Integration of Physiological Traits to Improve Drought Adaptation of Groundnut	326
14.5	Status of Genomic Resources in Groundnut	330
14.5.1	Marker Resources in Groundnut	330
14.5.2	Drought-Specific ESTs Libraries in Groundnut	331
14.6	Molecular Breeding and Genetic Linkage Maps in Groundnut	337
14.6.1	Genetic Linkage Maps for Groundnut	338
14.7	Transgenic Approach to Enhance Drought Tolerance	339
14.7.1	Transgenics: An Option to Pyramid Drought Adaptive Traits	340
14.8	Summary and Future Perspectives	343
14.8.1	Options and Approaches	344
14.8.2	Molecular Breeding a Potential Option for Genetic Improvement in Groundnut	344
14.8.3	Transgenics: A Potential Future Alternative Strategy	345
	Acknowledgments	345
	References	345
15	Chickpea: Crop Improvement under Changing Environment Conditions	361
	<i>B.K. Sarmah, S. Acharjee, and H.C. Sharma</i>	
15.1	Introduction	362
15.2	Abiotic Constraints to Chickpea Production	363
15.3	Modern Crop Breeding Approaches for Abiotic Stress Tolerance	364
15.3.1	Drought, Salinity, and Low Temperature	364
15.4	Genetic Engineering of Chickpea for Tolerance to Abiotic Stresses	365
15.4.1	Drought and Salinity	365
15.4.2	Elevated CO ₂ Concentrations	366
15.5	Biotic Constraints in Chickpea Production	366

15.5.1	Insect Pests	366
15.5.2	Diseases	368
15.5.3	Biological Nitrogen Fixation	369
15.6	Modern Molecular Breeding Approaches for Biotic Stress Tolerance	369
15.6.1	Pod Borers	369
15.6.2	Ascochyta and Fusarium	370
15.6.3	Wide Hybridization	371
15.7	Application of Gene Technology	372
15.7.1	Pod Borers	372
15.8	Conclusion	372
	References	373
16	Grain Legumes: Biotechnological Interventions in Crop Improvement for Adverse Environments	381
	<i>Pooja Bhatnagar-Mathur, Paramita Palit, Ch Sridhar Kumar, D. Srinivas Reddy, and Kiran K. Sharma</i>	
16.1	Introduction	382
16.2	Grain Legumes: A Brief Introduction	382
16.3	Major Constraints for Grain Legume Production	383
16.3.1	Biotic Stresses	383
16.3.1.1	Fungal Diseases	384
16.3.1.2	Viral Diseases	385
16.3.1.3	Insect Pests	385
16.3.1.4	Parasitic Weeds	385
16.3.2	Abiotic Stresses: A Threat to Grain Legumes	386
16.3.2.1	Heat Stress	386
16.3.2.2	Salinity	386
16.4	Biotechnological Interventions in Grain Legume Improvement	387
16.4.1	Groundnut	387
16.4.1.1	Biotechnology for Tolerance to Abiotic Stresses	388
16.4.1.2	Biotechnology for Resistance to Biotic Stresses	389
16.4.2	Chickpea	391
16.4.2.1	Biotechnology for Tolerance to Abiotic Stresses	392
16.4.2.2	Biotechnology for Resistance to Biotic Stresses	394
16.4.3	Pigeonpea	395
16.4.3.1	Biotechnology for Tolerance to Abiotic Stresses	396
16.4.3.2	Biotechnology for Resistance to Biotic Stresses	397
16.4.4	Soybean	398
16.4.4.1	Biotechnology for Tolerance to Abiotic Stresses	398
16.4.4.2	Biotechnology for Resistance to Biotic Stresses	400
16.4.5	Cowpea	401
16.4.5.1	Biotechnology for Tolerance to Abiotic Stresses	402
16.4.5.2	Biotechnology for Resistance to Biotic Stresses	403
16.4.6	Common Beans	403

16.4.6.1	Biotechnology for Tolerance to Abiotic Stresses	403
16.4.6.2	Biotechnology for Resistance to Biotic Stresses	404
16.4.7	Lentils	405
16.4.7.1	Biotechnology for Tolerance to Abiotic Stresses	405
16.4.7.2	Biotechnology for Resistance to Biotic Stresses	406
16.5	Future Prospects	407
16.6	Integration of Technologies	407
16.7	Conclusion	408
	References	409
17	Pulse Crops: Biotechnological Strategies to Enhance Abiotic Stress Tolerance	423
	<i>S. Ganeshan, P.M. Gaur, and R.N. Chibbar</i>	
17.1	Pulse Crops: Definition and Major and Minor Pulse Crops	423
17.2	Pulse Production: Global and Different Countries from FAOStat	424
17.3	Abiotic Stresses Affecting Pulse Crops	424
17.4	Mechanisms Underlying Stress Tolerance: A Generalized Picture	426
17.5	Strategies to Enhance Abiotic Stress Tolerance: Conventional	428
17.5.1	Breeding	428
17.5.2	Mining Germplasm Resources	430
17.5.3	Variation Creation: Traditional Mutagenesis and TILLING	430
17.6	Strategies to Enhance Abiotic Stress Tolerance:	
	Biotechnology and Genomics	432
17.6.1	Genetic Mapping and QTL Analysis	432
17.6.2	Transcriptomic Resources	434
17.6.3	Transgenic Approaches	435
17.6.4	<i>In Vitro</i> Regeneration and Transformation	436
17.7	Concluding Remarks	438
	References	438
	Section IIIC Rosaceae	449
18	Improving Crop Productivity and Abiotic Stress Tolerance in Cultivated <i>Fragaria</i> Using Omics and Systems Biology Approach	451
	<i>Jens Rohloff, Parkaj Barah, and Atle M. Bones</i>	
18.1	Introduction	451
18.2	Abiotic Factors and Agronomic Aspects	453
18.2.1	Botany and Agricultural History	453
18.2.1.1	Botany and Distribution	453
18.2.1.2	Nutritionals and Phytochemicals	454
18.2.1.3	Economic Aspects of Production and Environment	455
18.2.2	Abiotic Factors in Strawberry Production	458
18.2.2.1	Light	458
18.2.2.2	Temperature	459
18.2.2.3	Water	459

18.2.2.4	Soil	460
18.2.2.5	Atmospheric Gases and Airborne Contamination	460
18.2.2.6	Abiotic Stress Alleviation through Agricultural Practice	461
18.2.3	<i>Fragaria</i> Breeding toward Abiotic Factors	461
18.2.3.1	Cultivation and Berry Production	461
18.2.3.2	Fresh Market Quality and Consumer Demand	462
18.2.3.3	Postharvest and Food Chain	462
18.2.3.4	Processing and Industry	462
18.2.3.5	Classical Breeding of Varieties and Hybrids	463
18.2.3.6	Marker-Assisted Breeding (MAB)	463
18.3	Genetically Modified (GM) Plants	466
18.4	Omics Approaches toward Abiotic Stress in <i>Fragaria</i>	467
18.4.1	Genomic Approaches toward <i>Fragaria</i>	467
18.4.1.1	Case I: Genomic Approaches toward Cold Acclimation/Freezing Tolerance in <i>Fragaria</i>	468
18.4.2	Proteomic Approaches toward <i>Fragaria</i>	469
18.4.2.1	Case II: Proteomic Approaches toward Cold Acclimation/Freezing Tolerance in <i>Fragaria</i>	469
18.4.3	Metabolomic Approaches toward <i>Fragaria</i>	470
18.4.3.1	Case III: Metabolomic Approaches toward Cold Acclimation/Freezing Tolerance in <i>Fragaria</i>	471
18.5	Systems Biology as Suitable Tool for Crop Improvement	473
18.5.1	Omics Data Integration for Improving Plant Productivity/Translational Research	474
18.5.2	Plant/Crops Systems Biology	476
18.5.3	Pathway Modeling and the Concept of “Virtual Plant”	477
18.5.4	Network-Based Approaches	477
18.5.4.1	Correlation Studies Using Multivariate Data	478
18.5.4.2	Protein–Protein Interaction (PPI) Networks	478
18.5.4.3	Gene Regulatory Networks	478
18.5.4.4	Coexpression Networks	479
18.6	Conclusions and Future Prospects	479
18.6.1	Technology-Driven Innovations for <i>Fragaria</i> Breeding and Development	480
18.6.2	Biology-Related Issues for Improvements in the <i>Fragaria</i> Genus	480
	Acknowledgments	480
	References	480
19	Rose: Improvement for Crop Productivity	485
	<i>Madhu Sharma, Kiran Kaul, Navtej Kaur, Markandey Singh, Devendra Dhayani, and Paramvir Singh Ahuja</i>	
19.1	Introduction	485
19.2	Abiotic Stress and Rose Yield	487
19.2.1	Drought Stress	487
19.2.1.1	Ethylene Biosynthesis	490

19.2.2	Salt Stress	491
19.2.3	Light Stress	493
19.2.4	Low-Temperature Stress	494
19.2.5	High-Temperature Stress	494
19.3	Abiotic Stress and Reactive Oxygen Species	497
19.4	Stress-Related Genes Associated with Abiotic Stress Tolerance in Rose and Attempts to Transgenic Development	497
19.5	Conclusions	499
	Acknowledgments	500
	References	500

Index 507