Contents

Par	t I	Main Principles and Laws of Motion of an Ideal Fluid	
1	1.1 1.2 1.3	ations of Motion of an Ideal Incompressible Fluid; Kelvin's culation Theorem What is an Incompressible Fluid? Equations of Motion of an Ideal Incompressible Fluid Kelvin's Circulation Theorem	3 3 4 7
	1.4 Refe	Exercises	10 11
2	Pote Mor 2.1 2.2 2.3 2.4	ential Vorticity and the Conservation Laws of Energy and mentum for a Stratified Incompressible Fluid Potential Vorticity of a Stratified Incompressible Fluid The Bernoulli Equation Why do Planes Fly? Conservation Laws for the Momentum and Energy of an Incompressible Fluid Exercise	13 13 16 17 18 21 21
3	3.1 3.2 3.3 3.4 3.5	city; Equations of Gas Dynamics; The Ertel Invariant The Helicity Invariant Equations of Gas Dynamics or Equations of an Ideal Compressible Fluid Isentropic Motion of a Compressible Fluid The Kelvin Theorem and the Bernoulli Integral in Gas Dynamics Exercises	23 23 25 27 28 30 30
4	of a of E	Rossby-Obukhov Potential Vortex; Energy and Momentum Compressible Fluid; Hydrodynamic Approximation quations of Gas Dynamics The Rossby-Obukhov Potential Vortex in Shallow-Water Theory	

x Contents

	4.2	Conservation Laws and Fluxes of Energy and Momentum in Compressible Fluids	33	
	4.3	The Speed of Sound	35	
	4.4	Hydrodynamic Approximation of the Equations of Gas Dynamics .	37	
	4.5	Exercises	38	
		erences	39	
Pai	t II of R	Quasi-geostrophic Approximations of the Equations of Motion otating Barotropic and Baroclinic Fluids		
5		ations of Motion of a Rotating Fluid; The Notion		
		Geophysical Flow	43	
	5.1	Preliminary Remarks	43	
	5.2	Equations of Motion for a Rotating Fluid	44 47	
	5.3 5.4	Notion of a Geophysical Flow as a Hydrodynamical Object Exercises	5(
		erences	50	
6	Wha	at is Geophysical Hydrodynamics?	51	
	6.1	The Obukhov–Charney Basis	51	
	6.2	Fundamental Properties of Geophysical Flows	53	
	6.3	"Shallow-Water" Theory for a Rotating Ideal Fluid of Constant		
	٠.	Density	57	
	6.4	Exercises	60	
	Refe	erences	60	
7	The	Obukhov-Charney Equation; Rossby Waves	61	
	7.1	Quasi-geostrophical Approximation of the Conservation Equation for Potential Vorticity	61	
	7.2	Generalization to the Case of a Barotropic Fluid	63	
	7.3	Fundamental Invariants of Motion	64	
	7.4	Rossby Waves	65	
	7.5	Exercises	68	
	Refe	erences	70	
8		Resonant Interaction of Rossby Waves; Helmholtz and Obukhov		
		gular Vortices; The Kirchhoff Equations	7	
	8.1	Group Velocity of Rossby Waves	7	
	8.2	Resonant Interaction of Planetary Waves	72	
	8.3	The Helmholtz Singular Vortex and the Obukhov Geostrophic	74	
	8.4	Vortex	75 80	
	_	erences	82	
9		nations of Quasi-geostrophic Baroclinic Motion	83	
-	9.1	Equilibrium State of a Rotating Baroclinic Medium	83	
	9.2	Quasi-geostrophic Approximation of the Equations of Motion		
		of a Baroclinic Fluid	87	

Contents xi

	9.3 Exercises	
10	The Energy Balance, Available Potential Energy, and Rossby Waves in a Baroclinic Atmosphere 10.1 The Energy Conservation Law and the Concept of Available Potential Energy 10.2 Baroclinic Rossby Waves 10.3 Exercises References	93 93 93 98 99
11	Important Remarks on the Description of Baroclinic Geophysical Flows	102 104 106
Par	t III Hydrodynamic Stability and Atmospheric Dynamics	
12	The Notion of Dynamical Stability via the Example of Motion of a Rigid Body with a Fixed Point 12.1 Statement of the Problem 12.2 Linear Theory 12.3 Nonlinear Theory: The Lyapunov–Arnold Method 12.4 Geometric Interpretation 12.5 Exercises References	109 110 112 114 114
13	Stating the Linear Stability Problem for Plane-Parallel Flows of Ideal Homogeneous and Nonhomogeneous Fluids 13.1 Choosing the Initial Model 13.2 Linearization of the Equations of Motion 13.3 Reduction of Boundary Conditions 13.4 Exercises References	113 113 119 122
14	The Method of Normal Modes and Its Simplest Applications in the Theory of Linear Stability of Plane-Parallel Flows	12: 12: 13:
15	The Taylor Problem of Stability of Motion of a Stratified Fluid with a Linear Velocity Profile	133

xii Contents

	15.3 On Stability of a Flow of a Homogeneous Fluid with a Linear	
	Velocity Profile	137
	15.4 Exercises	
	References	139
16	Applications of Integral Relations and Conservation Laws	
	in the Theory of Hydrodynamic Stability	141
	16.1 General Theorems Based on Integral Relations	
	16.2 Proof of the Rayleigh Theorem by the Lyapunov-Arnold Method .	
	16.3 Exercises	
	References	
17	Stability of Zonal Flows of a Barotropic Atmosphere; The Notion	
	of Barotropic Instability	151
	17.1 The Kuo Theorem	151
	17.2 The Barotropic Instability Mechanism via an Example	
	of the Utmost Simplistic Equations of Atmospheric Dynamics	153
	17.3 Exercises	156
	References	157
18	The Concept of Baroclinic Instability; The Eady Model	159
	18.1 Stating the Problem	159
	18.2 The Charney–Stern Theorem	161
	18.3 The Eady Model	162
	18.4 Exercises	
	References	167
Par	t IV Friction in Geophysical Boundary Layers and Their Models	
19	Equations of Motion of a Viscous Fluid; The Boundary Conditions	17
	19.1 Derivation of the Navier–Stokes Equations	
	19.2 Formulation of Boundary Conditions	
	19.3 Dissipation of Kinetic Energy in an Incompressible Fluid	
	19.4 Heat Transfer in a Compressible Fluid	
	19.5 Heat Transfer in an Incompressible Fluid	
	19.6 Exercises	
	References	
20	Friction Mechanisms in Global Geophysical Flows; Quasi-	
	geostrophic Equation for Transformation of Potential Vorticity	18
	20.1 Ekman Planetary Boundary Layer	
	20.2 The Praudman–Stewartson Layers	
	20.3 The Quasi-geostrophic Equation for Transformation of Potential	
	Vorticity of a Barotropic Viscous Atmosphere	. 180
	20.4 Exercises	18
	References	. 18

Contents xiii

21	Kolmogorov Flow and the Role of Surface Friction	
	21.1 Formulation of a Linear Stability Problem	
	21.2 Application to a Stability Study of Rossby Waves	
	21.3 Conclusions	
	References	194
22	Stability of Quasi-two-dimensional Shear Flows with Arbitrary	
	Velocity Profiles	195
	22.1 New Interpretation of the Results in Linear Stability Theory for the Kolmogorov Flow	195
	22.2 Results in Linear Stability Theory for Strictly Two-Dimensional	
	Shear Flows and Their New Interpretation	197
	22.3 Surface of Neutral Stability of Typical Quasi-two-dimensional	199
	Shear Flows	199
	Flows	201
	22.5 Exercises	
	References	
•		
23	Friction in a Turbulent Boundary Layer	
	23.1 Turbulence in the Atmospheric Surface Layer	200
	23.2 Turbulent Planetary Boundary Layer (PBL) and Its Impact on Motions of Global Scale	200
	References	
	References	215
Par	t V Mechanical Prototypes of Equations of Motion of a Rotating	
	Stratified Fluid and a Toy Model of Atmospheric Circulation	
24	Hydrodynamic Interpretation of the Euler Equations of Motion	
	of a Classical Gyroscope and Their Invariants	217
	24.1 A Hydrodynamical Top	217
	24.2 Mechanical and Fluid Gyroscopes in the Field of Coriolis Forces .	220
	24.3 A Historical Note	
	24.4 Exercises	
	References	224
25	Mechanical Interpretation of the Oberbeck-Boussinesq Equations	
	of Motion of an Incompressible Stratified Fluid in a Gravitational	
	Field	225
	25.1 A Baroclinic Top	225
	25.2 Quasi-geostrophic Approximation of a Baroclinic Top	228
	25.3 Exercises	
	References	233
26	Motion of Barotropic and Baroclinic Tops as Mechanical Prototypes	
	for the General Circulation of Barotropic and Baroclinic Inviscid	
		226
	Atmospheres	

xiv Contents

	 26.2 Motion of a Baroclinic Top	237
	at Small Initial Rossby Numbers	240
	References	
27	Toy Model for General Circulation of a Viscous Atmosphere	245
	27.1 Consideration of Friction and External Heating	245
	27.2 Toy Circulation of Hadley and Rossby	245
	27.3 Influence of the Inclination Angle of the Axis of General Rotation	
	Relative to the Gravity Direction	255
	27.4 Conclusions	
	References	
App	oendix A On a Certain Boundary Condition	259
App	pendix B Stability of the Kolmogorov Flow with an External Friction	263
	B.1 Derivation of the Equation for σ	263
	B.2 Critical Curves	
	B.3 Exercises	
	References	
Inde	ex	269