Contents

Pr	eface			V		
I	Basi	c equa	tions of continuum mechanics			
1	Basic equations of continuous media					
	1.1	Method	ds of describing motion of continuous media	3		
			continuous media	3		
		1.1.2	Eulerian description	4		
		1.1.3	Lagrangian description	5		
		1.1.4	Differentiation of bases	5		
		1.1.5	Description of deformations and rates of deformation of a			
			continuous medium	7		
	1.2	Conser	vation laws. Integral and differential forms	9		
		1.2.1	Integral form of conservation laws	9		
		1.2.2	Differential form of conservation laws	11		
		1.2.3	Conservation laws at solution discontinuities	13		
		1.2.4	Conclusions	14		
	1.3	Therm	odynamics	15		
		1.3.1	First law of thermodynamics	15		
		1.3.2	Second law of thermodynamics	16		
		1.3.3	Conclusions	18		
	1.4	Constit	tutive equations	18		
		1.4.1	General form of constitutive equations. Internal variables	18		
		1.4.2	Equations of viscous compressible heat-conducting gases	21		
		1.4.3	Thermoelastic isotropic media	21		
		1.4.4	Combined media	22		
		1.4.5	Rigid-plastic media with translationally isotropic hardening	24		
		1.4.6	Elastoplastic model	25		
	1.5	Theory 1.5.1	of plastic flow. Theory of internal variables	26		
			elastoplastic medium	26		
		1.5.2	Equations of an elastoviscoplastic medium	30		

X

1.6	Experimental determination of constitutive relations under dynamic loading			
	1.6.1	Experimental results and experimentally obtained	32	
		constitutive equations	32	
	1.6.2	Substantiation of elastoviscoplastic equations on the basis of dislocation theory	36	
1.7	Princip	le of virtual displacements. Weak solutions to		
	equation	ons of motion	40	
	1.7.1 1.7.2	Principles of virtual displacements and velocities Weak formulation of the problem of continuum mechanics	40 42	
1.8	Variation	onal principles of continuum mechanics	43	
	1.8.1	Lagrange's variational principle	43	
	1.8.2	Hamilton's variational principle	44	
	1.8.3	Castigliano's variational principle	45	
	1.8.4	General variational principle for solving		
		continuum mechanics problems	46	
	1.8.5	Estimation of solution error	49	
1.9	Kinem	atics of continuous media. Finite deformations	49	
	1.9.1	Description of the motion of solids at large deformations	49	
	1.9.2	Motion: deformation and rotation	50	
	1.9.3	Strain measures. Green–Lagrange and	50	
	1.0.4	Euler–Almansi strain tensors	52 53	
	1.9.4	Deformation of area and volume elements	33	
	1.9.5	intermediate configurations	54	
	1.9.6	Differentiation of tensors. Rate of deformation measures	55	
1 1			57	
1.19		measures	57 57	
		Current configuration. Cauchy stress tensor	31	
	1.10.2	Piola–Kirchhoff stress tensors	57	
	1 10 3	Measures of the rate of change of stress tensors	59	
		<u>-</u>		
1.1		onal principles for finite deformations	60 60	
		Principle of virtual work	60	
1.1		tutive equations of plasticity under finite deformations	61	
		Multiplicative decomposition. Deformation gradients	61	
		Material description	63 64	
		Spatial description		
	1 1/4	LAZININ INCHININ INCHININ INCHINI	V.	

			Hyperelastoplastic medium	66 66
II	The	eory of	finite-difference schemes	
2	The	basics o	of the theory of finite-difference schemes	71
	2.1	2.1.1 2.1.2 2.1.3	difference approximations for differential operators	71 71 73 77
	2.2	Stabilit 2.2.1 2.2.2 2.2.3	Stability	78 78 78 79
	2.3	Numer 2.3.1 2.3.2 2.3.3 2.3.4	ical integration of the Cauchy problem for systems of equations Euler schemes	81 82 83 85 85
	2.4	Cauchy 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5	y problem for stiff systems of ordinary differential equations Stiff systems of ordinary differential equations Numerical solution Stability analysis Singularly perturbed systems Extension of a rod made of a nonlinear viscoplastic material.	88 88 89 90 91
	2.5		difference schemes for one-dimensional differential equations	95 95
		2.5.2 2.5.3 2.5.4 2.5.5 2.5.6	Solution of the wave equation as a system of first-order equations (acoustics equations) The leapfrog scheme The Lax-Friedrichs scheme The Lax-Wendroff Scheme Scheme viscosity	96 97 97 98 99
		2.5.7 2.5.8 2.5.9 2.5.10	Solution of the wave equation. Implicit scheme	100 101

		2.5.11	Unsteady thermal conduction. Implicit scheme (backward Euler scheme)	3
		2.5.12	Unsteady thermal conduction. Crank–Nicolson scheme 10	
			Unsteady thermal conduction. Allen–Cheng explicit scheme . 10	
			Unsteady thermal conduction. Du Fort-Frankel	
			explicit scheme	4
		2.5.15	Initial-boundary value problem of unsteady thermal	
			conduction. Approximation of boundary conditions	
			involving derivatives	
	2.6	Stabili	ty analysis for finite difference schemes	6
		2.6.1	Stability of a two-layer finite difference scheme 10	
		2.6.2	The von Neumann stability condition	
		2.6.3	Stability of the wave equation	8
		2.6.4	Stability of the wave equation as a system of first-order	
		265	equations. The Courant stability condition	
		2.6.5 2.6.6	Stability of schemes for the heat equation	
		2.6.7	Stability in solving boundary value problems	
		2.6.8	Step size selection in an implicit scheme in solving	J
		2.0.0	the heat equation	6
		2.6.9	Step size selection in solving the wave equation	
	2.7	Exerci	ses	7
3	Met	thods fo	or solving systems of algebraic equations	2
	3.1	Matrix	norm and condition number of matrix	2
		3.1.1	Relative error of solution for perturbed right-hand sides.	
			The condition number of a matrix	
		3.1.2	Relative error of solution for perturbed coefficient matrix 12	
		3.1.3	Example	
		3.1.4	Regularization of an ill-conditioned system of equations 12	.5
	3.2			
	3.2		methods for linear system of equations	
	3.2	3.2.1	Gaussian elimination method. Matrix factorization 12	26
	3.2	3.2.1 3.2.2	Gaussian elimination method. Matrix factorization	26 27
		3.2.1 3.2.2 3.2.3	Gaussian elimination method. Matrix factorization	26 27 28
		3.2.1 3.2.2 3.2.3 Iterativ	Gaussian elimination method. Matrix factorization	26 27 28 30
		3.2.1 3.2.2 3.2.3 Iterativ 3.3.1	Gaussian elimination method. Matrix factorization 12 Gaussian elimination with partial pivoting 12 Cholesky decomposition. The square root method 12 ve methods for linear system of equations 13 Single-step iterative processes 13	26 27 28 30
		3.2.1 3.2.2 3.2.3 Iterativ 3.3.1 3.3.2	Gaussian elimination method. Matrix factorization	26 27 28 30 31
		3.2.1 3.2.2 3.2.3 Iterativ 3.3.1 3.3.2 3.3.3	Gaussian elimination method. Matrix factorization 12 Gaussian elimination with partial pivoting 12 Cholesky decomposition. The square root method 12 we methods for linear system of equations 13 Single-step iterative processes 13 Seidel and Jacobi iterative processes 13 The stabilization method 13	26 27 28 30 31
		3.2.1 3.2.2 3.2.3 Iterativ 3.3.1 3.3.2	Gaussian elimination method. Matrix factorization 12 Gaussian elimination with partial pivoting 12 Cholesky decomposition. The square root method 12 we methods for linear system of equations 13 Single-step iterative processes 13 Seidel and Jacobi iterative processes 13 The stabilization method 13 Optimization of the rate of convergence of a	26 27 28 30 30 31 33
		3.2.1 3.2.2 3.2.3 Iterativ 3.3.1 3.3.2 3.3.3	Gaussian elimination method. Matrix factorization 12 Gaussian elimination with partial pivoting 12 Cholesky decomposition. The square root method 12 we methods for linear system of equations 13 Single-step iterative processes 13 Seidel and Jacobi iterative processes 13 The stabilization method 13	26 27 28 30 31 33

Contents xiii

	3.4	Metho	ds for solving nonlinear equations	
		3.4.1	Nonlinear equations and iterative methods	
		3.4.2	Contractive mappings. The fixed point theorem	
		3.4.3	Method of simple iterations. Sufficient convergence condition	143
	3.5	Nonlir	near equations: Newton's method and its modifications	145
		3.5.1	Newton's method	145
		3.5.2	Modified Newton–Raphson method	147
		3.5.3	The secant method	147
		3.5.4	Two-stage iterative methods	
		3.5.5	Nonstationary Newton method. Optimal step selection	149
	3.6	Metho	ds of minimization of functions (descent methods)	152
		3.6.1	The coordinate descent method	152
		3.6.2	The steepest descent method	154
		3.6.3	The conjugate gradient method	155
		3.6.4	An iterative method using spectral-equivalent operators or	
			reconditioning	156
	3.7	Exerci	ses	157
4	Met	hods fo	or solving boundary value problems for systems of equations	160
	4.1	Numer	rical solution of two-point boundary value problems	160
		4.1.1	Stiff two-point boundary value problem	
		4.1.2	Method of initial parameters	161
	4.2	Genera	al boundary value problem for systems of linear equations	163
	4.3	Genera	al boundary value problem for systems of nonlinear equations	164
		4.3.1	Shooting method	
		4.3.2	Quasi-linearization method	165
	4.4	Solutio	on of boundary value problems by the sweep method	166
		4.4.1	Differential sweep	
		4.4.2	Solution of finite difference equation by the sweep method	
		4.4.3	Sweep method for the heat equation	
	4.5	Solutio	on of boundary value problems for elliptic equations	
		4.5.1	Poisson's equation	
		4.5.2	Maximum principle for second-order	
			finite difference equations	175
		4.5.3	Stability of a finite difference scheme for Poisson's equation .	
		4.5.4	Diagonal domination	
		4.5.5	Solution of Poisson's equation by the matrix sweep method	178
		4.5.6	Fourier's method of separation of variables	181

	4.6	Stiff bo 4.6.1 4.6.2 4.6.3	Stiff systems of differential equations	183 185
	4.7	Exercis	ses	189
III equ			ference methods for solving nonlinear evolution ontinuum mechanics	
5	Way	e propa	ngation problems	197
	5.1	Linear 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9	vibrations of elastic beams Longitudinal vibrations Explicit scheme. Sufficient stability conditions Longitudinal vibrations. Implicit scheme Transverse vibrations Transverse vibrations. Explicit scheme Transverse vibrations. Implicit scheme Coupled longitudinal and transverse vibrations Transverse bending of a plate with shear and rotational inertia Conclusion	197 197 199 200 202 203 204 206
	5.2	5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10	Hyperbolic system of equations and characteristics Finite difference approximation along characteristics. The direct and semi-inverse methods Inverse method. The Courant–Isaacson–Rees grid-characteristic scheme Wave propagation in a nonlinear elastic beam Wave propagation in an elastoviscoplastic beam Discontinuous solutions. Constant coefficient equation Discontinuous solutions of a nonlinear equation Stability of difference characteristic equations Characteristic and grid-characteristic schemes for solving stiff problems Stability of characteristic and grid-characteristic schemes for stiff problems Characteristic schemes of higher orders of accuracy	 209 211 212 215 219 220 222 222 224
	5.3		and three-dimensional characteristic schemes and their ation	227

		5.3.3	Spatial three-dimensional characteristics for semi-linear system	231
		5.3.4	Characteristic equations. Spatial problem	
		5.3.5	Axisymmetric problem	236
		5.3.6	Difference equations. Axisymmetric problem	238
		5.3.7	A brief overview of the results. Further development and	
			generalization of the method of spatial characteristics and its	
			application to the solution of dynamic problems	
	5.4	Couple	ed thermomechanics problems	245
	5.5		ential approximation for difference equations	
		5.5.1	Hyperbolic and parabolic forms of differential approximation .	
		5.5.2	Example	
		5.5.3	Stability	
		5.5.4 5.5.5	Analysis of dissipative and dispersive properties	
		5.5.6	Analysis of properties of finite difference schemes for	233
		5.5.0	discontinuous solutions	254
		5.5.7	Smoothing of non-physical perturbations in a calculation on a	
			real grid	259
	5.6	Exercis	ses	260
6	Fini	te-diffe	rence splitting method for solving dynamic problems	263
	6.1	Genera	al scheme of the splitting method	263
		6.1.1	Explicit splitting scheme	
		6.1.2	Implicit splitting scheme	
		6.1.3	Stability	265
	6.2		ng of 2D/3D equations into ID equations	
			ng along directions)	265
		6.2.1	Splitting along directions of initial-boundary value problems	265
		(22	for the heat equation	
		6.2.2	Splitting schemes for the wave equation	208
	6.3	-	ng of constitutive equations for complex rheological models into	270
		_	ones. A splitting scheme for a viscous fluid	
		6.3.1 6.3.2	Divergence form of equations	
		6.3.3	One-dimensional equations. Ideal gas	
		6.3.4	Implementation of the scheme	
	6.4		ng scheme for elastoviscoplastic dynamic problems	
	U. T	Spiriti	is selicine for clasicy iscopiastic dynamic problems	210
		-	Constitutive equations of elastoplastic media	276
		6.4.1 6.4.2	Constitutive equations of elastoplastic media	

		6.4.4 6.4.5 6.4.6	The theory of von Mises type flows. Isotropic hardening Drucker–Prager plasticity theory	283
	6.5	Splittin 6.5.1 6.5.2	g schemes for points on the axis of revolution	286
	6.6	Integra 6.6.1 6.6.2	tion of elastoviscoplastic flow equations by variation inequality Variation inequality Dissipative schemes	290
	6.7	Exercis	ses	295
7	Solu	ition of	elastoplastic dynamic and quasistatic problems with finite	
	defo	rmatio	ns	298
	7.1	Conser 7.1.1 7.1.2 7.1.3	rvative approximations on curvilinear Lagrangian meshes Formulas for natural approximation of spatial derivatives Approximation of a Lagrangian mesh	298 299
	7.2	Finite 6 7.2.1 7.2.2	elastoplastic deformations	303305
		7.2.3	Splitting of the equations of a hypoelastic material	306
	7.3	Propag 7.3.1 7.3.2 7.3.3	Basic equations	307 307
	7.4	The PI 7.4.1 7.4.2 7.4.3 7.4.4 7.4.5 7.4.6	C method and its modifications for solid mechanics problems Disadvantages of Lagrangian and Eulerian meshes The particle-in-cell (PIC) method The method of coarse particles Limitations of the PIC method and its modifications The combined flux and particle-in-cell (FPIC) method The method of markers and fluxes	311 311 314 315 316
	7.5	Applic	eation of PIC-type methods to solving elastoviscoplastic	
		proble		
		7.5.1	Hypoelastic medium	
		7.5.2	Hypoelastoplastic medium	
		7.5.3	Splitting for a hyperelastoplastic medium	321

Contents xvii

	7.6	Optimi	zation of moving one-dimensional meshes	324
		7.6.1	Optimal mesh for a given function	325
		7.6.2	Optimal mesh for solving an initial-boundary value problem	
		7.6.3	Mesh optimization in several parameters	327
		7.6.4	Heat propagation from a combustion source	328
	7.7	Adapti	ve 2D/3D meshes for finite deformation problems	330
		7.7.1	Methods for reorganization of a Lagrangian mesh	
		7.7.2	Description of motion in an arbitrary moving	
			coordinate system	331
		7.7.3	Adaptive meshes	333
	7.8	Unstea	dy elastoviscoplastic problems on moving adaptive meshes	335
		7.8.1	Algorithms for constructing moving meshes	335
		7.8.2	Selection of a finite difference scheme	337
		7.8.3	A hybrid scheme of variable order of approximation at	
			internal nodes	
		7.8.4	A grid-characteristic scheme at boundary nodes	
		7.8.5	Calculation of contact boundaries	
		7.8.6	Calculation of damage kinetics	346
		7.8.7	Numerical results for some applied problems with finite	
			elastoviscoplastic strains	
	7.9	Exercis	ses	352
8	Mod	deling o	f damage and fracture of inelastic materials and structures	354
	8.1	Conce	pt of damage and the construction of models of damaged media	354
		8.1.1	Concept of continuum fracture and damage	
		8.1.2	Construction of damage models	
		8.1.3	Constitutive equations of the GTN model	361
	8.2	Genera	alized micromechanical multiscale damage model	363
		8.2.1	Micromechanical model. The stage of plastic flow	
			and hardening	
		8.2.2	Stage of void nucleation	
		8.2.3	Stage of the appearance of voids and damage	
		8.2.4	Relationship between micro and macro parameters	
		8.2.5	Macromodel	
		8.2.6	Tension of a thin rod with a constant strain rate	
		8.2.7	Conclusion	375
	8.3	Numer	rical modeling of damaged elastoplastic materials	375
		8.3.1	Regularization of equations for elastoplastic materials	.
		0.7.	at softening	
		8.3.2	Solution of damage problems	
		8.3.3	Inverse Euler method	3/7

	8.3.4	Solution of a boundary value problem. Computation	
		of the Jacobian	379
	8.3.5	Splitting method	379
	8.3.6	Integration of the constitutive relations of the GTN model	382
	8.3.7	Uniaxial tension. Computational results	386
	8.3.8	Bending of a plate	
	8.3.9	Comparison with experiment	389
	8.3.10	Modeling quasi-brittle fracture with damage	390
8.4	Extens	ion of damage theory to the case of an arbitrary	
	stress-s	strain state	393
	8.4.1	Well-posedness of the problem	
	8.4.2	Limitations of the GTN model	395
	8.4.3	Associated viscoplastic law	396
	8.4.4	Constitutive relations in the absence of porosity	
		$(k < 0.4, f = 0, \sigma_r = 0) \dots$	
	8.4.5	Fracture model. Fracture criteria	397
8.5	Numer	rical modeling of cutting of elastoviscoplastic materials	398
	8.5.1	Introduction	398
	8.5.2	Statement of the problem	
8.6	Conclu	isions. General remarks on elastoplastic equations	406
	8.6.1	Formulations of systems of equations for elastoplastic media .	
	8.6.2	A hardening elastoplastic medium	406
	8.6.3	Ideal elastoplastic media: a degenerate case	407
	8.6.4	Difficulties in solving mixed elliptic-hyperbolic problems	408
	8.6.5	Regularization of an elastoplastic model	408
	8.6.6	Elastoplastic shock waves	409
Bibliogra	aphy		411
Index			421