Contents

Pr	eface		v		
Ι	Elements of the theory of numerical modeling of gas-discharge phenomena				
1	Models of gas-discharge physical mechanics				
	1.1	 1.1.2 Mathematical model of electric-arc (EA) plasma generator 1.1.3 Models of micro-wave (MW) plasma generators 1.1.4 Models of laser supported plasma generators (LSPG) 1.1.5 Numerical simulation models of steady-state radiative gas dynamics of RF-, EA-, MW-, and LSW-plasma generators 1.1.6 Method of numerical simulation of non-stationary radiative gas-dynamic processes in subsonic plasma flows. The method 	5 14 19 22 25 33		
	1.2	Models of nonuniform chemically equilibrium and nonequilibrium plasma 1.2.1 Model of the five-component RF plasma generator 1.2.2 Model of the three-component RF plasma generator 1.2.3 Two-temperature model of RF plasma under ionization equilibrium	49 54 57 59 61		
2		lication of numerical simulation models for the investigation of			
	lase	supported waves	64		
	2.1	Air laser supported plasma generator	64		
	2.2	Hydrogen laser supported plasma generator	74		
	2.3	2.3.1 Statement of the problem	81 83 84 85		
	∠.→	Laser supported waves in the field of gravity	フェ		

3	Con	putatio	onal models of magnetohydrodynamic processes	104
	3.1	Genera	l relations	105
	3.2	Vector	form of Navier-Stokes equations	106
	3.3	System	of equations of magnetic induction	107
	3.4	Force a	ecting on ionized gas from electric and magnetic fields	111
	3.5	A heat	emission caused by action of electromagnetic forces	112
	3.6	Comple 3.6.1 3.6.2	tete set of the MHD equations in a flux form	115
-	3.7	The flu 3.7.1 3.7.2	x form of MHD equations in a dimensionless form Definition of the normalizing parameters	120
	3.8		HD equations in the flux form. The use of pressure instead of c internal energy	126
	3.9	of the l	ectors and eigenvalues of Jacobian matrixes for transformation MHD equations from conservative to the quasilinear form. ent of nonstationary boundary conditions	
	3.10		ularity of Jacobian matrixes for transformation of the equations ated in the conservative form	133
	3.11	System	of the MHD equations without singular transfer matrixes	140
	3.12	system 3.12.1 3.12.2	alues and eigenvectors of nonsingular matrixes of quasilinear of the MHD equations	144 148
	3.13	A meth	nod of splitting for three-dimensional (3D) MHD equations	153
	3.14		ation of a splitting method for nonstationary 3D MHD flow enerated by plasma plume in the ionosphere	161
П	Nu	merical	l simulation models of glow discharge	
4	The	physica	al mechanics of direct current glow discharge	171
	4.1		mentals of the physics of direct current glow discharge. The Steenbeck theory of a cathode layer	172

	4.2	Drift-diffusion model of glow discharge
		4.2.1 Governing equations
		4.2.2 Reduction of governing equations to a form convenient for
		numerical solution
		4.2.3 Initial conditions of the boundary value problem for the glow
		discharge
		4.2.4 Glow discharge with heat of gas
		4.2.5 Estimation of typical time scales of the solved problem 187
	4.3	Finite-difference methods for the drift-diffusion model
		4.3.1 Finite-difference scheme for the Poisson equation 194
		4.3.2 Finite-difference scheme for the equation of charge motion 197
		4.3.3 Conservative properties of the finite-difference scheme for the
		motion equation
		4.3.4 The order of accuracy of the finite-difference approximation
		used. The mesh diffusion
		4.3.5 The finite-difference grids
		4.3.6 Iterative methods for solving systems of linear algebraic
		equations in canonical form
		4.3.7 An iterative algorithm for the solution of a self-consistent
		problem
		4.3.8 Characteristic properties of a solution of a two-dimensional
		problem about glow discharge in a nonstationary statement 222
	4.4	Numerical simulation of the one-dimensional glow discharge 225
		4.4.1 Governing equations and boundary conditions
		4.4.2 The elementary implicit finite-difference scheme
	4.5	Diffusion of charges along a current line and effective method of grid
		diffusion elimination in calculations of glow discharges
		4.5.1 Governing equations for the one-dimensional case 230
		4.5.2 Boundary conditions
		4.5.3 Numerical methods for the one-dimensional calculation case . 231
		4.5.4 Results of 1D numerical simulation
		4.5.5 Method of fourth order accuracy for the solution of the
		drift-diffusion model equations
	4.6	Two-dimensional structure of glow discharge regarding neutral gas
		heating
		4.6.1 Statement of two-dimensional axially symmetric problem 242
		4.6.2 Numerical simulation results
5	Drif	-diffusion model of glow discharge in an external magnetic field 261
	5.1	Derivation of the equations for calculation model
	5.2	Numerical simulation results
	J	

	5.4	Glow discharge in a cross magnetic field in view of heating of neutral gas	80 81 82 83
	5.4	field	96 05
	5.5	Computing model of glow discharge in electronegative gas 3 5.5.1 Computational model 3 5.5.2 Numerical simulation results 3	15
	5.6	Numerical modeling of glow discharge between electrodes arranged on the same surface	31 34 35
Ш	An	nbipolar models of direct current discharges	
6	_	asi-neutral model of gas discharge in an external magnetic field and as flow	345
	6.1	The spatial scale of electric field shielding in plasma. The Debye radius	45
	6.2	The ambipolar diffusion	47
	6.3	Ambipolar diffusion in an external magnetic field	50
	6.4	Two-dimensional model of ambipolar diffusion in an external magnetic field	52
	6.5	Illustrative results of numerical simulation	54

7	Visc	cous interaction on a flat plate with surface discharge in a magnetic	
	field	l	360
	7.1	Statement of a problem about viscous interaction	362
	7.2	Boundary conditions of the problem	365
	7.3	Transfer and electro-physical properties of gas	366
	7.4	The numerical method of solution	367
	7.5	Numerical simulation results 7.5.1 The heat-insulated plate 7.5.2 Heating electrodes 7.5.3 The surface discharge	369 370
8		personic flow of rarefied gas in a channel with glow discharge in an	
	exte	rnal magnetic field	378
	8.1	Model of gas dynamics	379
	8.2	Model of electrodynamics of glow discharge in a magnetic field	380
	8.3	Boundary conditions of the problem	381
	8.4	Closing relations	382
	8.5	Algorithm of solution of complete set of equations	384
	8.6	Numerical simulation results	384
9	Нур	personic flow of rarefied gas in a curvilinear channel with glow	
	disc	harge	398
	9.1	Governing equations	399
	9.2	Boundary conditions and closing relations	400
	9.3	Numerical simulation results	401
A	Appendix		
	A.1	Fundamental constants	411
	A.2	Ratios between units of electricity and magnetism	412
Bib	liogr	aphy	415
Index			423