

Table of Contents

Affective and Cognitive Sciences for Socially Interactive Robots

Manipulating Mental States through Physical Action	1
<i>Jesse Gray and Cynthia Breazeal</i>	
The Automaticity of Social Behavior towards Robots: The Influence of Cognitive Load on Interpersonal Distance to Approachable versus Less Approachable Robots	15
<i>Jaap Ham, Mirjam van Esch, Yvonne Limpens, Jente de Pee, John-John Cabibihan, and Shuzhi Sam Ge</i>	
How to Make a Robot Smile? Perception of Emotional Expressions from Digitally-Extracted Facial Landmark Configurations	26
<i>Caixia Liu, Jaap Ham, Eric Postma, Cees Midden, Bart Joosten, and Martijn Goudbeek</i>	
A Cross-Cultural Study on Generation of Culture Dependent Facial Expressions of Humanoid Social Robot	35
<i>Gabriele Trovato, Tatsuhiro Kishi, Nobutsuna Endo, Kenji Hashimoto, and Atsuo Takanishi</i>	
Robot Social Intelligence	45
<i>Mary-Anne Williams</i>	
Android Emotions Revealed	56
<i>Eugenios Vlachos and Henrik Schärfe</i>	

Situated Interaction and Embodiment

Embodiment and Cognitive Learning – Can a Humanoid Robot Help Children with Autism to Learn about Tactile Social Behaviour?	66
<i>Ben Robins, Kerstin Dautenhahn, and Paul Dickerson</i>	
A User Trial Study to Understand Play Behaviors of Autistic Children Using a Social Robot	76
<i>Alvin Wong, Yeow Kee Tan, Adrian Tay, Anthony Wong, Dilip Kumar Limbu, Tran Anh Dung, Yuanwei Chua, and Ai Ping Yow</i>	
Collecting Heart Rate Using a High Precision, Non-contact, Single-Point Infrared Temperature Sensor	86
<i>Laura Boccanfuso, Eva Juarez Perez, Myra Robinson, and Jason M. O’Kane</i>	

How Can a Social Robot Facilitate Children's Collaboration?	98
<i>Michihiro Shimada, Takayuki Kanda, and Satoshi Koizumi</i>	
Emotional Robotics in Elder Care - A Comparison of Findings in the UK and Germany	108
<i>Barbara Klein and Glenda Cook</i>	
Dorothy Robotubby: A Robotic Nanny	118
<i>Haibin Yan, Marcelo H. Ang Jr., and Aun Neow Poo</i>	
Robots to Assist the Elderly and Persons with Disabilities	
Would Granny Let an Assistive Robot into Her Home?	128
<i>Susanne Frennert, Britt Östlund, and Håkan Eftring</i>	
How Social Robots Make Older Users Really Feel Well – A Method to Assess Users' Concepts of a Social Robotic Assistant	138
<i>Tobias Körtner, Alexandra Schmid, Daliah Batko-Klein, Christoph Gisinger, Andreas Huber, Lara Lammer, and Markus Vincze</i>	
Identifying Specific Reasons Behind Unmet Needs May Inform More Specific Eldercare Robot Design	148
<i>Rebecca Q. Stafford, Bruce A. MacDonald, and Elizabeth Broadbent</i>	
Various Foods Handling Movement of Chopstick-Equipped Meal Assistant Robot and There Evaluation	158
<i>Akira Yamazaki and Ryosuke Masuda</i>	
Imagery of Disabled People within Social Robotics Research	168
<i>Sophya Yumakulov, Dean Yergens, and Gregor Wolbring</i>	
HRI Evaluation of a Healthcare Service Robot	178
<i>I-Han Kuo, Chandimal Jayawardena, Elizabeth Broadbent, Rebecca Q. Stafford, and Bruce A. MacDonald</i>	
Automated Behavioral Mapping for Monitoring Social Interactions among Older Adults	188
<i>Claudia B. Rebola, Gbolabo Ogunmakin, and Patricio A. Vela</i>	
Social Acceptance of Robots and Their Impact to the Society	
Anthropomorphism and Human Likeness in the Design of Robots and Human-Robot Interaction	199
<i>Julia Fink</i>	

Studies in Public Places as a Means to Positively Influence People's Attitude towards Robots	209
<i>Nicole Mirnig, Ewald Strasser, Astrid Weiss, and Manfred Tscheligi</i>	
Difference of Efficiency in Human-Robot Interaction According to Condition of Experimental Environment	219
<i>Ho Seok Ahn, Dong-Wook Lee, Dongwoon Choi, Duk-Yeon Lee, Manhong Hur, and Hogil Lee</i>	
Programming Behaviour of a Personal Service Robot with Application to Healthcare	228
<i>Chandan Datta, Bruce A. MacDonald, Chandimal Jayawardena, and I-Han Kuo</i>	
Investigating the Effects of Robotic Displays of Protest and Distress	238
<i>Gordon Briggs and Matthias Scheutz</i>	
Motion Synchronization for Human-Robot Collaboration	248
<i>Shuzhi Sam Ge and Yanan Li</i>	
Human-Robot Handshaking: A Hybrid Deliberate/Reactive Model	258
<i>Yingzi Zeng, Yanan Li, Pengxuan Xu, and Shuzhi Sam Ge</i>	
Artificial Empathy	
Should Empathic Social Robots Have Interiority?	268
<i>Luisa Damiano, Paul Dumouchel, and Hagen Lehmann</i>	
Why Not Artificial Sympathy?	278
<i>Minoru Asada, Yukie Nagai, and Hisashi Ishihara</i>	
How Can a Robot Attract the Attention of Its Human Partner? A Comparative Study over Different Modalities for Attracting Attention	288
<i>Elena Torta, Jim van Heumen, Raymond H. Cuijpers, and James F. Juola</i>	
Long-Term Interactions with Empathic Robots: Evaluating Perceived Support in Children	298
<i>Iolanda Leite, Ginevra Castellano, André Pereira, Carlos Martinho, and Ana Paiva</i>	
Robot Drama Research: From Identification to Synchronization	308
<i>Zaven Paré</i>	
Talking-Ally: Intended Persuasiveness by Utilizing Hearership and Addressivity	317
<i>Naoki Ohshima, Yusuke Ohyama, Yuki Odahara, P. Ravindra S. De Silva, and Michio Okada</i>	

HRI through Non-verbal Communication and Control

Does Observing Artificial Robotic Systems Influence Human Perceptual Processing in the Same Way as Observing Humans?	327
<i>Agnieszka Wykowska, Ryad Chellali, Md. Mamun Al-Amin, and Hermann J. Müller</i>	
Using Compliant Robots as Projective Interfaces in Dynamic Environments	338
<i>Davide De Tommaso, Sylvain Calinon, and Darwin G. Caldwell</i>	
Affective Tele-touch	348
<i>John-John Cabibihan, Lihao Zheng, and Chin Kiang Terence Cher</i>	
Human-Humanoid Co-working in a Joint Table Transportation	357
<i>Paul Evrard and Abderrahmane Kheddar</i>	
User-Defined Body Gestures for Navigational Control of a Humanoid Robot	367
<i>Mohammad Obaid, Markus Häring, Felix Kistler, René Bühling, and Elisabeth André</i>	
Studies on Grounding with Gaze and Pointing Gestures in Human-Robot-Interaction	378
<i>Markus Häring, Jessica Eichberg, and Elisabeth André</i>	

Social Telepresence Robots, Embodiments and Networks

Regulating Emotion by Facial Feedback from Teleoperated Android Robot	388
<i>Shuichi Nishio, Koichi Taura, and Hiroshi Ishiguro</i>	
Body Ownership Transfer to Teleoperated Android Robot	398
<i>Shuichi Nishio, Tetsuya Watanabe, Kohei Ogawa, and Hiroshi Ishiguro</i>	
A Geminoid as Lecturer	408
<i>Julie Rafn Abildgaard and Henrik Scharfe</i>	
Social Networking for Robots to Share Knowledge, Skills and Know-How	418
<i>Wei Wang, Benjamin Johnston, and Mary-Anne Williams</i>	
Social Acceptance of a Teleoperated Android: Field Study on Elderly's Engagement with an Embodied Communication Medium in Denmark	428
<i>Ryuji Yamazaki, Shuichi Nishio, Hiroshi Ishiguro, Marco Nørskov, Nobu Ishiguro, and Giuseppe Balistreri</i>	

Partially Disembodied Robot: Social Interactions with a Robot's Virtual Body	438
<i>Hirotaka Osawa, Thibault Voisin, and Michita Imai</i>	
Interaction and Collaboration among Robots, Humans, and Environment	
Keep an Eye on the Task! How Gender Typicality of Tasks Influence Human–Robot Interactions	448
<i>Dieta Kuchenbrandt, Markus Häring, Jessica Eichberg, and Friederike Eyssel</i>	
A Multi-modal Approach for Natural Human-Robot Interaction.....	458
<i>Thomas Kollar, Anu Vedantham, Corey Sobel, Cory Chang, Vittorio Perera, and Manuela Veloso</i>	
Investigation of Optimal Deployment Problem in Three-Dimensional Space Coverage for Swarm Robotic System	468
<i>Hongliang Ren and Zion T.H. Tse</i>	
HAG-SR Hand: Highly-Anthropomorphic-Grasping Under-Actuated Hand with Naturally Coupled States	475
<i>Chi Zhang, Wenzeng Zhang, Zhenguo Sun, and Qiang Chen</i>	
RoboASR: A Dynamic Speech Recognition System for Service Robots	485
<i>Abdelaziz A. Abdelhamid, Waleed H. Abdulla, and Bruce A. MacDonald</i>	
Effects of Different Robot Interaction Strategies During Cognitive Tasks.....	496
<i>Sebastian Schneider, Ingmar Berger, Nina Riether, Sebastian Wrede, and Britta Wrede</i>	
A Multi-path Selecting Navigation Framework with Human Supervision	506
<i>Peng Liu, Guangming Xiong, Haojie Zhang, Yan Jiang, Jianwei Gong, and Huiyan Chen</i>	
Monocular Visual Odometry and Obstacle Detection System Based on Ground Constraints	516
<i>Shude Guo and Cai Meng</i>	

Human Augmentation, Rehabilitation, and Medical Robots I

Impedance Control of a Rehabilitation Robot for Interactive Training	526
<i>Wei He, Shuzhi Sam Ge, Yanan Li, Effie Chew, and Yee Sien Ng</i>	
Design and Development of a Wearable Rehabilitation Robot	536
<i>Wei He, Shuzhi Sam Ge, Weian Guo, Zhen Zhao, Jie Zhang, Shengtao Xiao, and Fon Ping Quek Nuraisha</i>	
Development and Path Planning of a Biped Robot	546
<i>Rui Li and Zhijun Li</i>	
Modelling and Trajectory Planning for a Four Legged Walking Robot with High Payload	552
<i>Lorenzo Gagliardini, Xinghua Tian, Feng Gao, Chenkun Qi, Christine Chevallereau, and Xianchao Zhao</i>	
Combining Gait Research of the Quadruped/Biped Reconfigurable Walking Chair with Parallel Leg Mechanism	562
<i>Xing Hu, Hongbo Wang, Lingfeng Sang, Qifang Gu, and Lin Yuan</i>	
Design of an Automatic Rotatory Chair Prototype for BPPV Treatment	572
<i>Fei Xu, Dingguo Zhang, Xueguan Gao, and Shankai Yin</i>	
Modeling and Control of a Lower-Limb Rehabilitation Robot	581
<i>Yanjiao Ma, Wei He, and Shuzhi Sam Ge</i>	
Human Augmentation, Rehabilitation, and Medical Robots II	
Particle Swarm Optimization Based Design for Knee Joint of Wearable Exoskeleton Robot	591
<i>Jia-yuan Zhu and Hong Zhou</i>	
The Application of Machine-Learning on Lower Limb Motion Analysis in Human Exoskeleton System	600
<i>Cao-yuan Zhao, Xiang-gang Zhang, and Qing Guo</i>	
Hydraulic Pressure Control System Simulation and Performance Test of Lower Extremity Exoskeleton	612
<i>Qing Guo, Xiang-gang Zhang, Dan Jiang, and Lu-lu Zhang</i>	
Dynamic Characteristics Study of Human Exoskeleton Based on Virtual Prototype	621
<i>Wen-ming Cheng, Fang Liu, and Jian-bing Shao</i>	

Structure Optimization and Finite Element Analysis of the Human Body Exoskeletons Lower Limb Power	631
<i>Fang Liu, Wen-ming Cheng, and Jian-bing Shao</i>	
Kinematics and Dynamics Modeling for Lower Limbs Rehabilitation Robot	641
<i>Qian Zhang, Min Chen, and Limei Xu</i>	
Coordinated Control Method of the Lower Extremity Exoskeleton Based on Human Electromechanical Coupling	650
<i>Qing Guo, Hong Zhou, and Dan Jiang</i>	
Author Index	661