Contents

Pre	face .		xvii
Ack	nowle	edgments and dedication	xxxv
For	eword	by Frank Drake	xxvii
For	eword	by Giovanni Bignami	xxxix
List	of fi	gures	xliii
List	of ta	ables	xlix
List	of al	bbreviations and acronyms	li
PAF	RT I	SETI STATISTICS	1
1	The s	statistical Drake equation	3
	1.1	Introduction to SETI	3
	1.2	The key question: How far away are they?	4
	1.3	Computing N by virtue of the Drake equation (1961)	7
	1.4	The Drake Equation is over-simplified	10
	1.5	The statistical Drake equation	11
	1.6	Solving the statistical Drake equation by virtue of the Central	
		Limit Theorem (CLT) of statistics	13
	1.7	An example explaining the statistical Drake equation	14
	1.8	Finding the probability distribution of the ET_Distance by virtue	
		of the statistical Drake equation	17
	1.9	The "Data Enrichment Principle" as the best CLT consequence	
		upon the statistical Drake equation (any number of factors	
		allowed)	20
	1.10	Conclusions	20

vi Contents

	1.11	Acknowledgment
	1. A	Proof of Shannon's 1948 theorem stating that the uniform distribution is the "most uncertain" one over a finite range of
		values
	1.B	Original text of the author's paper #IAC-08-A4.1.4 entitled "The statistical Drake equation"
	1.C	Original PowerPoint presentation of the author's paper #IAC-
		08-A4.1.4 entitled the statistical Drake equation
	1.D	Statistical Drake equation
	1.12	References
2	Lettir	ng Maxima do the calculations
	2.1	A new way of publishing mathematical books
	2.2	A short history of "Macsyma" (1968-present)
	2.3	A short history of "Maxima" (1982-present)
	2.4	A famous example of Macsyma correcting human errors
	2.5	First Maxima example: Lognormal properties up to kurtosis
	2.6	Second Maxima example: Correcting the author's wrong
		equation for the skewness of both the lognormal and Maccone
		distributions published between 2008 and 2011
	2.7	Third Maxima example: Number of protons and neutrons in
		Einstein's static universe
	2.8	Reference
	2. A	Lognormal properties up to kurtosis
	2.B	Incorrect skewness for lognormal and Maccone distributions
		prior to April 29, 2011
	2.C	Tensor demo number of protons and neutrons in Einstein static universe
3	How	many planets for man and aliens?
	3.1	Habitable planets for man
	3.2	The statistical Dole equation
	3.3	The number of habitable planets for man in the Galaxy follows
		the lognormal distribution
	3.4	The distance between any two nearby hospitable planets follows
	J	the Maccone distribution
	3.5	A numerical example: Some 100 million habitable planets exist in
	5.5	the Galaxy!
	3.6	Distance (Maccone) distribution of the nearest habitable planet
	5.0	to us according to the previous numerical input
	3.7	Comparing the statistical Dole and Drake equations: Number of
	5.1	habitable planets vs. number of ET civilizations in this Galaxy.
	3.8	SEH, the "statistical equation for the habitables" is just the
	ال. ن	statistical Dole equation
	3.9	Conclusions
	٠,٦	Conclusions

	3.A	Statistical Dole equation	120
	3.10	Bibliography	129
4		tical Fermi paradox and Galactic travels	131
	4.1	The classical coral model of Galactic colonization	131
	4.2	The classical Fermi paradox (1950)	134
	4.3	The statistical coral model of Galactic colonization	135
	4.4	Finding the probability distribution of the overall time needed to	
		colonize the whole Galaxy	137
	4.5	Conclusions	143
	4.6	Acknowledgments	144
	4.7	References	144
5	How	long does a civilization live?	145
	5.1	Two examples of the statistical Drake equation related to the	1 .0
	5.1	lifetime fL of a technological civilization	145
	5.2	Example #1: a technological civilization lasting only 45 of the	1 10
	3.2	4.5 billion years of our earth, such as humanity	145
	5.3	Example #2: a technological civilization lasting 90 million out of	
	0.0	9 billion years of their sun's lifetime	145
	5.4	Example #1 rewritten in the language of the statistical Drake	
	5	equation	146
	5.5	Example #2 rewritten in the language of the statistical Drake	
	5.0	equation	149
	5.6	Conclusions	152
	5.7	Acknowledgments	152
	5.8	References	153
_	T 10		1.5.5
6		span modeling by finite b-lognormals	155 155
	6.1	Introducing b-lognormals as our model for all life-spans	133
	6.2	Adolescence $(t = a)$ and senility $(t = s)$ points of b-lognormals (in	156
	()	other words, their two inflexion points)	156
	6.3	Finding the b-lognormal from the ordinates of its two inflexion	157
	<i>((((((((((</i>	points plus either a or s	137
	6.4	Finding the b-lognormal from the birth (b) , adolescence (a) , and	158
	6.5	senility (s) abscissae	130
	6.5	Finding (approximately) the b-lognormal from its peak only: that	159
	6.6	is, given its abscissa p and ordinate P	133
	6.6	Finding the b -lognormal from the birth (b) , adolescence (a) , and peak (p) abscissae	160
	6.7	Finite b-lognormals: defining the death time (d)	160
	6.8	Finding the b-lognormal given the times of birth $(t = b)$, senility	100
	0.0	the times of of the $(t = b)$, sentity $(t = s)$, and death $(t = d)$	162
	6.9	Finding the death time (d) from birth (b), peak (p), and senility	102
	0.9	(s)(p), and sentity	162
		(9)	102

	6.10	Finding the probability of the length of someone's life; that is, the area under the relevant finite b-lognormal	163
	6.A	Appendix	165
	6.B	Appendix	172
7	Civiliz	zations as finite b-lognormals: Mathematical history	185
	7.1	Introduction	185
	7.2	Examples of historic civilizations as finite b-lognormals	185
	7.3	Plotting all b-lognormals together and finding the trends	187
	7.4	Finding the exponential envelopes of all b-lognormals	188
	7.5	<i>b</i> -lognormals of future civilizations	190
	7.6	References	190
	7. A	Civilizations as finite b-lognormals	192
8		inian exponential growth and cladistics	215
	8.1	Introduction: Evolution of life on Earth and the statistical Drake equation	215
	8.2	Evolution as exponential increase in the number of living species	215
	8.3	Introducing the darwin (d) unit, measuring the amount of	217
	0.4	evolution that a given species reached	217
	8.4	Darwinian exponential as the envelope of all b -lognormals, each representing a different species triggered by evolution at the time $t = b > 0$ (cladistics)	218
	8.5	Cladogram branches constructed of increasing, decreasing, or	
		stable (horizontal) exponential arches	219
	8.6	KLT filtering in the Hilbert space and Darwinian selection are	222
		the same thing in our theory	222
	8.7	Conclusion	222
	8.A	Appendix	223
	8.8	References	237
	8.9	Further reading	237
9	Socie	tal statistics by the statistical Drake equation	239
	9.1	Introduction: Breaking down the Drake equation so as to isolate its societal part	239
	9.2	The probability distribution of the ratio of two lognormally	
		distributed random variables	240
	9.3	Breaking the Drake equation down into the Dole equation times the societal part	244
	9.4	Conclusions	245
	9.5	References	246
10	Cubic	es of historical recovery	247
	10.1	Introduction	247
	10.2	History of astronomy as a cubic	248

	10.3	Casting Aristarchus and Copernicus into equations	249
	10.4	The scientifically "true or false" convention	251
	10.5	What is the real meaning of the cubic's vertical axis?	253
	10.6	Determining the cubic in terms of Mt and Rt only	254
	10.7	Normalizing the cubic to -1 (i.e., in recession or falsity units).	257
	10.8	History of astronomy normalized in falsity units (i.e., units at the	
		very depth of the Dark Ages)	258
	10.9	History of SETI as a cubic	259
	10.10	Extrapolating the two cubics to the invention of the warp drive	
		(2067 AD?)	262
	10.11	Extrasolar planets since 1995	264
	10.12	History of extrasolar planet discoveries in our cubic model	265
	10.13	Matching (the two cubics of) SETI and exoplanets!	265
	10.14	History of the unification of Europe as a cubic	266
	10.15	Human life expectancy cubic	269
	10.16	Is the "force" behind progress increasing linearly in time?	274
	10.17	Conclusion	274
	10.18	Acknowledgment	274
	10.19	References	274
	10.A	Solution of four simultaneous linear algebraic equations	276
	10.B	"Life_Expectancy_Cubic_v09_October_6_2011.xmcd1"	286
11	Expon	nential evolution in time as a geometric Brownian motion	293
	11.1	Introduction	293
	11.2	Our statistical Drake equation is the static special case of $N(t)$	295
	11.3	The $N(t)$ stochastic process is a geometric Brownian motion	296
	11.4	Properties of the $N(t)$ geometric Brownian motion	296
	11.5	The new stochastic process $D(t)$ yielding the civilization distance	
		in time	301
	11.6	GBM as the exponentially increasing number of habitable	
		planets	304
	11.A	Appendix	307
	11.B	Appendix	318
PA	RT II	SPACE MISSIONS TO EXPLOIT GRAVITATIONAL LENSING	333
12	C		225
		uch gain at 550 AU	335 335
		Introduction	336
	12.2	The minimal focal distance of 550 AU for electromagnetic waves	339
	12.3	The (antenna) gain of the gravitational lens of the Sun	341
	12.4	The combined, total gain on the FOCAL spacecraft	341
	12.5	The image size at the spacecraft distance z	342
	12.6	Requirements on the image size and antenna beamwidth at the	343
	12.7	spacecraft distance z	343 344
	12.7	Augulai resolution at the spacecraft distance Z	J44

x Contents

	12.8	Spatial resolution at the spacecraft distance z	345
	12.9	References	345
13	FOC	AL mission to 1,000 AU as an interstellar precursor	349
	13.1	Introduction	349
	13.2	The author's 2009 book about the FOCAL space mission	349
	13.3	Using two antennas and a tether to get a much larger field of view for FOCAL	350
	13.4	Observing the Galactic Black Hole magnified by virtue of FOCAL	353
	13.5	Observing the three Alpha Centauri stars magnified by virtue of FOCAL	354
	13.6	Observing extrasolar planets magnified by virtue of FOCAL	358
	13.7	Conclusion	359
	13.8	References	359
14	Belt o	of focal spheres between 550 and 17,000 AU	361
	14.1	Introduction	361
	14.2	From the Sun to the planets: all as gravitational lenses	362
	14.3	(Antenna) gain of the gravitational lenses of the Sun and planets	366
	14.4	Kraus gain vs. Drake gain: which one is right?	367
	14.5	Drake gain vs. Kraus gain for the (naked) Sun, Jupiter, and Earth	369
	14.6	Using the lenses of all planets to sweep across the sky in search of exoplanets	373
	14.7	Conclusions	374
	14.8	References	374
15	Galac	etic Internet by star gravitational lensing	377
	15.1	Introduction	377
	15.2	The radio link	377
	15.3	Bit error rate at the Alpha Centauri distance enhanced by the magnification provided by the Sun's gravity lens and the FOCAL	
		space mission	381
	15.4	The radio bridge between the Sun and α Cen A using their gravitational lenses	383
	15.5	The radio bridge between the Sun and Barnard's Star using their gravitational lenses	386
	15.6	The radio bridge between the Sun and Sirius A using their gravitational lenses	386
	15.7	The radio bridge between the Sun and another Sun-like star located at the Galactic Bulge using their gravitational lenses	388
	15.8	The radio bridge between the Sun and another Sun-like star located inside the Andromeda Galaxy (M31) using their gravita-	
		tional lenses	389

	15.9	Conclusion	390
	15.10 15.11	Acknowledgment	391 391
16	Extrag	galactic Internet by black hole gravitational lensing	393
	16.1	An Introduction to SETI between galaxies by exploiting the supermassive black holes located inside each galaxy as magnify-	202
	16.2	ing gravitational lenses	393 394
	16.3	The radio bridge between Sgr A* and the M31 Andromeda Galaxy's P2 black hole	396
	16.4	The radio bridge between Sgr A* and the dwarf elliptical galaxy M32 small satellite of Andromeda	398
	16.5	The radio bridge between Sgr A* and the M106 galaxy (NGC 4258) half way between Andromeda and the Virgo Supercluster Center (M87)	399
	16.6	The radio bridge between Sgr A* and the M104 Sombrero Galaxy (NGC 4594) again half way between Andromeda and	399
	16.7	the Virgo Supercluster Center (M87)	402
	16.8	Conclusions	406
	16.9	References	407
PA	RT III	KLT FOR OPTIMAL SIGNAL PROCESSING	409
17	A sim	ple introduction to the KLT and BAM-KLT	411
	17.1	Introduction	411
	17.2	A bit of history	411
	17.3	A heuristic derivation of the KL expansion	412
	17.4	The KLT finds the best basis (eigen-basis) in the Hilbert space	
		spanned by the eigenfunctions of the autocorrelation of $X(t)$.	415
	17.5	Continuous time vs. discrete time in the KLT	417
	17.6	The KLT: just a linear transformation in the Hilbert space	418
	17.7	A breakthrough about the KLT: Maccone's "Final Variance"	
	17.7	A breakthrough about the KLT: Maccone's "Final Variance" Theorem	419
	17.7 17.8		419
		Theorem	419 422
		Theorem	
	17.8	Theorem	422
	17.8 17.9	Theorem	422 428
	17.8 17.9 17.10	Theorem	422 428 429
	17.8 17.9 17.10 17.11	Theorem	422 428 429 430

	17.14	Global Navigation Satellite Systems (GNSS) improved by the KLT
	17.15	How to eavesdrop on alien chat
	17.16	Conclusions
	17.17	Acknowledgments
	17.17	References
	17.19	Annotated bibliography
	17.19 17.A	Appendix
	17.74	Appendix
18	KLT o	of radio signals from relativistic spaceships in uniform and deceler-
	ated n	notion
	18.1	Introduction
	18.2	Uniform motion
	18.3	Decelerated motion
	18.4	Checking the KLT of decelerated motion by Matlab simulations
	18.5	Total energy of the noisy signal from relativistic spaceships in
		decelerated and uniform motion
	18.6	Independence Day movie: exploiting the KLT to detect an alien
		spaceship approaching the Earth in decelerated motion
	18.7	References
19	KLT o	of radio signals from relativistic spaceships in hyperbolic motion
	19.1	Introduction
	19.2	Hyperbolic motion
	19.3	Total energy of signals from relativistic spaceships in hyperbolic motion
	19.4	KLT for signals emitted in asymptotic hyperbolic motion
	19.5	Checking the KLT of asymptotic hyperbolic motion by Matlab
		simulations
	19.6	Signal total energy as a stochastic process of $T cdots$
	19.7	Instantaneous noise energy for asymptotic hyperbolic motion:
		preparatory calculations
	19.8	KL expansion for the instantaneous energy of the noise emitted
		by a relativistic spaceship
	19.9	Conclusion
	19.10	References
	17.10	
20	KLT (of radio signals from relativistic spaceships in arbitrary motion
	20.1	Introduction
	20.2	Arbitrary spaceship acceleration
	20.3	Asymptotic arbitrary spaceship acceleration
	20.4	Power-like asymptotic spaceship acceleration
	20.5	Conclusion
	20.6	References

		Contents	xiii
21	Brown	ian motion and its time rescaling	517
	21.1	Introduction	517
	21.2	Brownian motion essentials	518
	21.3	KLT of Brownian motion	520
	21.4	White noise as the derivative of Brownian motion with respect to	
		time	521
	21.5	Introduction to time rescaling	523
	21.6	The white noise integral and its autocorrelation	523
	21.7	Time rescaling and Gaussian properties of $X(t)$	525
	21.8	Orthogonal increments for nonoverlapping time intervals	527
	21.9	An application of the KLT: finding the total energy of $X(t)$	527
	21.10	References	534
22	Macco	one first KLT theorem: KLT of all time-rescaled Brownian motions	535
	22.1	Introduction	535
	22.2	Self-adjoint form of a second-order differential equation	535
	22.3	Exact solution of the integral equation for KLT eigenfunctions	
		of all Brownian motions of which the time is not elapsing	
		uniformly	538
	22.4	A simpler formula for Bessel function order	544
	22.5	Stability criterion for eigenfunctions	545
	22.6	References	547
23	KLT o	of the $B(t^{2H})$ time-rescaled Brownian motion	549
	23.1	Introduction	549
	23.2	Time-rescaled Brownian motion $B(t^{2H})$	549
	23.3	KL expansion of $B_{PH}(t)$	551
	23.4	Total energy of $B_{PH}(t)$	556
	23.5	References	559
24	Macco	one second KLT theorem: KLT of all time-rescaled square Brownian	
		ns	561
	24.1	Introduction	561
	24.2	Autocorrelation of any zero-mean square process	561
	24.3	KLT of any zero-mean time-rescaled square process	562
	24.4	· · · · · · · · · · · · · · · · · · ·	566
	24.5	Checking the KLT of the square Brownian motion by Matlab	
		simulations	571
	24.6	References	571
25	KLT	of the $B^2(t^{2H})$ time-rescaled square Brownian motion	573
	25.1	Introduction	573
	25.2	Preparatory calculations about $B^2(t^{2\alpha+1})$	576
	25.3	KL expansion of the square process $B^2(t^{2H})$	581
	25.4	Checking the KLT of $B^2(t^{2H})$ by Matlab simulations	583
	25.1	Dec 1221 of 2 (*) by Matthew official actions	503

25.5

584

26	Macco	one third KLT theorem: Asymptotic KLT of GBM	585
	26.1	Introduction	585
	26.2	Time-rescaling function for the exponential autocorrelation $e^{t_1 \wedge t_2}$	585
	26.3	Approximated (asymptotic for $t \to \infty$) KLT eigenvalues and	
		eigenfunctions	587
	26.4	KLT of geometric Brownian motion $N(t)$	593
	26.5	Reference	594
	26.A	Appendix	594
27	A Ma	tlab code for KLT simulations	607
	27.1	Introduction	607
	27.2	The main file "Standard_Brownian_Motion_MAIN.m"	607
	27.3	The file "input_data_toggle.m"	609
	27.4	The file "Brownian_Autocorrelation.m"	611
	27.5	The file "process_path.m"	612
	27.6	The file "graphic.m"	612
	27.7	The file "analytic_KLT.m"	614
	27.8	The file "ANALYTIC_KLT_square_brow_motion.m"	615
	27.9	The file "ANALYTIC_KLT_uniform_rel.m"	621
	27.10	Conclusions	624
28	KLT :	applications and a Fortran code (Stephane Dumas)	625
	28.1	The eigenproblem	626
	28.2	Data compression	630
	28.3	Classification of spectra	633
	28.4	Signal processing	634
	28.5	Eigenimages	638
	28.6	References	640
	28.7	Bibliography	641
	28.A	Fortran code for KLT simulations	641
DA	RT IV	THE UNITED NATIONS AND PROTECTION OF THE MOON'S	
PA	NI IV	FARSIDE	657
29	The U	United Nations and protection of the Moon's farside	659
	29.1	Introduction: Defining the PAC (Protected Antipode Circle)	659
	29.2	The urgent need for RFI-free radio astronomy	660
	29.3	Terminal longitude λ on the Moon farside for radiowaves	
		emitted by telecom satellites in orbit around the Earth	661
	29.4	The Quiet Cone overhead the farside of the Moon	663
	29.5	Selecting the Daedalus crater near the farside center	664
	29.6	Our vision of the Moon's farside for RFI-free science	665
	29.7	Two further Lagrangian points (L1 and L2) of the Sun-Earth	
		system and how they "pollute" the farside of the Moon	668
	29.8	Attenuation of man-made RFI on the Moon's farside	669

	29.9	Legal issues: a possible strategy to have the PAC approved by
	29.10	the United Nations (COPUOS)
	29.10	Treaty of 1979
	29.11	The coming "New Moon Rush": trying to protect the farside
	27.11	from commercial, astronautical, and military exploitation
	29.12	This author's speech at the United Nations COPUOS (June 10,
	27.12	2010)
	29.13	Conclusions
	29.14	Acknowledgment
	29.15	References
	29.16	Bibliography
	29.A	Appendix
PA	RT V	EPILOGUE
30	Epilog	que: Evolution, progress, and SETI
	30.1	Introduction: jumping from physics to information theory
	30.2	Exponential curve in time determined by two points only
	30.3	The assumption that the exponential curve in time is the GBM
		mean value curve
	30.4	The "no-evolution" stationary stochastic process
	30.5	Differential entropy of the "running b-lognormal" peaked at the
		GBM exponential average
	30.6	Decreasing entropy for an exponentially increasing evolution:
		progress!
	30.7	Six examples: entropy changes in Darwinian evolution, human
		history between Ancient Greece and now, and Aztecs and Incas
		vs. Spaniards
	30.8	Conclusion
	30.A	Appendix
In	lev	