Contents

Foreword	XV
----------	----

Preface XVII

About the Editors XIX

List of Contributors XXIII

Part I History and Treaties in CBRN – Warfare and Terrorism 1

1	A Glance Back – Myths and Facts about CBRN Incidents 3
	Andre Richardt and Frank Sabath
1.1	Introduction 3
1.2	History of Chemical Warfare 4
1.2.1	Chemical Warfare Agents in Ancient Times 5
1.2.2	Birth of Modern Chemical Warfare Agents and Their Use in World
	War I 5
1.2.3	Chemical Warfare Agents between the Two World Wars 8
1.2.3.1	The Italian-Ethiopian War 8
1.2.3.2	Japanese Invasion of China 9
1.2.3.3	First Nerve Agents 9
1.2.4	Chemical Warfare Agents in World War II 9
1.2.5	Chemical Warfare Agents during the Cold War 10
1.2.6	Chemical Warfare Agents Used in Terrorism 11
1.2.7	Conclusions and Outlook 12
1.3	Introduction to Biological Warfare 13
1.3.1	Most Harmful Pandemics in History 14
1.3.2	Biological Warfare Agents in Ancient Times BC 16
1.3.3	Biological Warfare Agents in the Middle Ages to World War I 18
1.3.4	From World War I to World War II - the Beginning of Scientifically
	Based Biological Weapons Research 18

vı	Contents	
	1.3.5	From the End of World War II to the 1980 – the Great Bioweapons Programs 20
	1.3.6	From the 1980 Up Today – the Emerging of Bioterrorism 20
	1.3.7	Conclusions and Outlook 20
	1.4	Introduction to Radiological and Nuclear Warfare 22
	1.4.1	Discovery of Nuclear Fission 23
	1.4.2	Manhattan Project - Development of the First Fission Weapons 25
	1.4.3	Nuclear Arms Race 29
	1.4.4	Status of World Nuclear Forces 35
	1.4.5	Radiological Warfare and Nuclear Terrorism 35
	1.4.6	Conclusions and Outlook 37
		References 37
	2	International Treaties - Only a Matter for Diplomats? 39 Martin Schaarschmidt
	2.1	Introduction to the Minefield of Negotiations 39
	2.1.1	Arms Reduction and Prohibition of Use 41
	2.1.2	Arms Control and International Controlling Bodies 42
	2.1.2	Nonproliferation 42
	2.1.3	Why It Is so Difficult to Implement International Regulations? 42
	2.2.1	Trust – Devoid of Trust Every Effort Is Useless 43
	2.2.2	Negotiation – Special Skills Are Required 43
	2.2.3	Dual Use – Good or Bad Technology? 44
	2.2.3	Verification – an Instrument for Trust Building 44
	2.2.5	Technological Advancement – Gain of Momentum 45
	2.2.3	Historic Development of Treaties – the Link to the Incidents 46
	2.4	Today's System of Treaties – a Global Network 47
	2.4.1	The Geneva Conventions – the Backbone for Further Treaties 49
	2.4.2	Deployment System for Weapons – Control the Carrier Systems 50
	2.4.3	Biological and Chemical Weapons 51
	2.4.4	Chemical Weapons Convention 1993 and Organization for the
	2.4.4	Prohibition of Chemical Weapons (OPCW) 52
	2.4.5	Implications of the Chemical Weapons Convention (CWC) and the
	2.4.5	Biological Weapons Convention (BWC) 53
	2.5	Nuclear Weapons 54
	2.5.1	Nonproliferation 55
	2.5.2	Disarmament 56
	2.5.2.1	Strategic Arms Limitation Talks/Treaty (SALT) 56
	2.5.2.2	Strategic Arms Reduction Treaty (START) 57
	2.5.2.3	Strategic Offensive Reductions (SORT) 2003 58
	2.5.3	Test-Ban and Civil Use 58

Nuclear-Weapon-Free Zones 60

Conclusions and Where Does the Road Lead? 64

Organizations 63

References 64

2.5.4

2.6

2.7

Part II	CBRN	Characteristics	– I	s	There	Something
Inimitable?	67					

3	Chemical Agents – Small Molecules with Deadly Properties 69
	Hans-Jürgen Altmann, Silke Oelze, and Bernd Niemeyer
3.1	Are Special Properties Required for Chemical Warfare Agents? 69
3.2	How can we Classify Chemical Warfare Agents? 71
3.2.1	A: Physicochemical Behavior 72
3.2.2	B: Route of Entry into the Body 74
3.2.3	C: Organs to be Affected 75
3.2.4	D: Physiological Effects on Humans 76
3.2.5	E: Identification According to the NATO Code 78
3.3	Properties of Chemical Warfare Agents 78
3.3.1	Blister Agents (Vesicants) 78
3.3.2	Arsenicals 83
3.3.3	Blood Agents 85
3.3.4	Tear Agents (Lachrymators) 89
3.3.5	Vomiting Agents (Sternutators) 92
3.3.6	Nerve Agents 94
3.4	Choking and Irritant Agents 97
3.5	Incapacitating Agents 99
3.6	Dissemination Systems of Chemical Warfare Agents 99
3.7	Conclusions and Outlook 101
	References 101
4	Characteristics of Biological Warfare Agents – Diversity of Biology 103
	Birgit Hülseweh
4.1	What Is Special? 104
4.2	Types of Biological Agents 104
4.2.1	Bacteria 105
4.2.2	Viruses 107
4.2.3	Toxins 108
4.2.4	Fungi 109
4.3	Risk Classification of Biological and Biological Warfare Agents 110
4.3.1	Risk Classification of Potential Biological Warfare Agents 111
4.4	Routes of Entry 114
4.5	Origin, Spreading, and Availability 118
4.5.1	Methods of Delivery 120
4.6	The Biological Event – Borderline to Pandemics, Endemics, and
	Epidemics 121
4.7	The Bane of Biotechnology – Genetically Engineered Pathogens 121
4.8	Conclusions and Outlook 123
	References 123

VIII	Contents	
------	----------	--

5	Characteristics of Nuclear and Radiological Weapons 125
	Ronald Rambousky and Frank Sabath
5.1	Introduction to Nuclear Explosions 126
5.1.1	Nuclear Fission 126
5.1.1.1	Critical Mass for a Fission Chain 127
5.1.2	Nuclear Fusion 128
5.1.3	Weapon Design 129
5.1.3.1	Pure Fission Weapon 129
5.1.3.2	Fusion-Boosted Fission Weapon 130
5.1.3.3	Thermonuclear Weapons 130
5.1.4	Effects of a Nuclear Explosion 131
5.2	Direct Effects 133
5.2.1	Thermal Radiation 133
5.2.2	Blast and Shock 137
5.2.3	Initial Nuclear Radiation 140
5.2.4	Residual Nuclear Radiation 145
5.3	Indirect Effects 149
5.3.1	Transient Radiation Effects on Electronics (TREE) 149
5.3.2	Nuclear Electromagnetic Pulse (NEMP) 152
5.3.2.1	Generation of Electric Field 152
5.3.2.2	NEMP in High-Altitude Burst 153
5.3,2.3	Early Component of NEMP (E1) 154
5.3.2.4	Intermediate Component of NEMP (E2) 156
5.3,2.5	Late Time Component of NEMP (E3) 157
5.4	Radiological Weapons 159
5.4.1	Radioactive Material and Radiological Weapons 160
5.4.2	Impacts of Radiological Weapons 162
5.4.2.1	Radiological Exposure Device 162
5.4.2.2	Radiological Dispersal Device 162
	References 165
	Part III CBRN Sensors – Key Technology for an Effective CBRN
	Countermeasure Strategy 167
6	Why Are Reliable CBRN Detector Technologies Needed? 169
	Birgit Hülseweh, Hans-Jürgen Marschall, Ronald Rambousky,
	and Andre Richardt
6.1	Introduction 169
6.2	A Concept to Track CBRN Substances 170
6.3	Low-Level Exposure and Operational Risk Management 175
6.4	Conclusions and Outlook 177
	References 178

7	Analysis of Chemical Warfare Agents - Searching for Molecules 179 Andre Richardt, Martin Jung, and Bernd Niemeyer
7.1	Analytical Chemistry – the Scientific Basis for Searching
7.1	Molecules 180
7.2	Standards for Chemical Warfare Agent Sensor Systems and Criteria
	for Deployment 182
7.2.1	Recommended Chemical Agent Concentration and Requirements for
	Chemical Warfare Agent Sensors 182
7.2.2	Acute Exposure Guideline Levels (AEGLs) for Chemical Warfare
	Agents 183
7.3	False Alarm Rate and Limit of Sensitivity 184
7.4	Technologies for Chemical Warfare Agent Sensor Systems 185
7.4.1	Mass Spectrometry 187
7.4.2	Atomic Absorption Spectrometry (AAS) 190
7.4.3	Ion Mobility Spectrometry (IMS) 192
7.4.4	Colorimetric Technology 197
7.4.5	Photoionization Technology (PI) 198
7.4.6	Electrochemical Technologies 199
7.4.7	Infrared (IR) Spectroscopy 200
7.5	Testing of Chemical Warfare Agent Detectors 203
7.6	Conclusions and Future Developments 206
	References 208
8	Detection and Analysis of Biological Agents 211
	Birgit Hülseweh and Hans-Jürgen Marschall
8.1	What Makes the Difference? 212
8.2	The Ideal Detection and Identification Platform 215
8.3	Bioaerosols: Particulate and Biological Background 216
8.4	Aerosol Detection – A Tool for Threat Monitoring 217
8.4.1	Cloud Detection 217
8.4.2	Radio Detecting and Ranging (RADAR) and Light Detection and
	Ranging (LIDAR) 219
8.4.3	Aerosol Particle Sizer (APS), Flame Photometry, and Fluorescence
	Aerosol Particle Sizer (FLAPS) 220
8.4.4	Detector Layout Topology, Sensitivity, and Response 222
8.5	Sampling of Biological Agents 223
8.5.1	Aerosol Sampling 224
8.5.1.1	Surface Sampling 227
8.6	Identification of Biological Warfare Agents 229
8.6.1	Immunological Methods Based on Enzyme-Linked Immunosorbent
	Assay (ELISA) 229
8.6.2	Molecular Methods 233
8.6.3	Chemical and Physical Identification 236

Contents	
8.7	Developing and Upcoming Technologies 238
8.8	Conclusions 239
	References 240
9	Measurement of Ionizing Radiation 243
	Ronald Rambousky
9.1	Why Is Detection of Ionizing Radiation So Important? 244
9.2	Physical Quantities used to Describe Radioactivity and Ionizing
	Radiation 248
9.2.1	Activity 248
9.2.2	Absorbed Dose 249
9.2.3	Equivalent Dose 250
9.2.4	Effective Dose Equivalent 250
9.2.5	Operational Dose Quantities 250
9.3	Different Measuring Tasks Concerning Ionizing Radiation 251
9.3.1	Personal Dosimetry 252
9.3.2	Measuring the Ambient Dose Rate 252
9.3.3	Searching for Gamma- and Neutron-Sources 252
9.3.4	Surface Contamination Measurements 253
9.3.5	Nuclide Identification 253
9.3.6	Measurement of Activity 254
9.3.7	Detection of Radioactive Aerosols 255
9.4	Basics of Radiation Detectors 256
9.4.1	Gas-Filled Detectors 256
9.4.2	Luminescence Detectors 259
9.4.3	Photo-emulsion 260
9.4.4	Scintillators 260
9.4.5	Semiconductor Detectors 262
9.4.6	Neutron Detectors 265
9.5	Gamma Dose Rate and Detection of Gamma Radiation 266
9.5.1	Metrological Dose Rate Measurements 266
9.5.2	Energy Response of a Dose-Rate Detector 267
9.5.3	Quantitative Detection 268
9.6	Conclusions and Outlook 271
	References 272
	Part IV Technologies for Physical Protection 273
10	Filter Technology Clean Air is Required 275
	Andre Richardt and Thomas Dawert
10.1	Filters - Needed Technology Equipment for Collective and Individual
	Protection 275
10.2	General Considerations 276
10.3	What are the Principles for Filtration and Air-Cleaning? 278
10.3.1	Particulate Filtration 279

10.3.2	Gas-Phase Air Cleaning 283
10.4	Test Methods 286
10.4.1	Particle filter testing methods 288
10.4.2	Gasfilter tests 289
10.5	Selection Process for CBRN Filters 290
10.6	Conclusions and Outlook 292
	References 293
11	Individual Protective Equipment - Do You Know What to Wear? 295
	Karola Hagner and Friedrich Hesse
11.1	Basics of Individual Protection 296
11.2	Which Challenges for Individual Protection Equipment (IPE) Can Be Identified? 296
11 2	
11.3	The Way to Design Individual Protective Equipment 298 Function 299
11.4	
11.5	Ergonomics – a Key Element for Individual Protection Equipment 301
11.6	Donning and Doffing - Training Is Required 305
11.7	Overview of IPE Items – They Have to Act in Concert 306
11.7.1	Respiratory Protection 307
11.7.2	Respirator Design 310
11.7.2.1	Air-Purifying Escape Respirator (APER) with CBRN Protection 313
11.7.3	Air-Purifying Respirators (APRs) with Canisters for Ambient Air 314
11.7.3.1	Respirators with Blower Support (Powered Air-Purifying Respirator, PAPR) 315
11.7.3.2	Respirators with Self-contained Breathing Apparatus (SCBA) 316
11.7.3.2	Canisters 317
11.7.5	Body Protection 317
11.7.6	Protective Suits 318
11.7.6.1	Permeable Protective Suits 319
11.7.6.1	Impermeable Protective Suits 320
11.7.0.2	Protective Gloves 322
11.7.7	Protective Gloves 322 Protective Footwear 323
11.7.8	Pouches 323
	Ponchos 324
11.7.10	Self-Aid Kit 324
11.7.11	
11.7.12	Casualty Protection 325
11.8	Quality Assurance 326
11.9	Workplace Safety 327
11.10	Future Prospects 327
	Reletely et 1/X

XII	Contents
-----	----------

12	Collective Protection – A Secure Area in a Toxic Environment 331
	Andre Richardt and Bernd Niemeyer
12.1	Why Is Collective Protection of Interest? 332
12.2	Collective Protection Systems - Required for Different
	Scenarios 337
12.3	Basic Design 341
12.3.1	Air Filtration Unit (AFU) and Auxiliary Equipment 342
12.3.2	Environmental Control Unit (ECU) 344
12.3.3	Contamination Control Area (CCA) 345
12.3.4	Airlock – the Bottleneck for Ingress and Egress 346
12.3.5	Toxic-Free Area (TFA) 348
12.4	Conclusions and Outlook 348
	References 349
	Part V Cleanup after a CBRN Event 351
13	Decontamination of Chemical Warfare Agents – What is
	Thorough? 353
	Hans Jürgen Altmann, Martin Jung, and Andre Richardt
13.1	What Is Decontamination? 353
13.2	Dispersal and Fate of Chemical Warfare Agents 354
13.3	Decontamination Media for Chemical Warfare Agents 356
13.3.1	Aqueous-Based Decontaminants 358
13.3.1.1	Water 358
13.3.1.2	Water-Soluble Decontamination Chemicals 359
13.3.2	Non-aqueous Decontaminants 359
13.3.3	Heterogeneous Liquid Media 362
13.3.3.1	Macroemulsions (Emulsions) 362
13.3.3.2	Microemulsions 366
13.3.3.3	Foams and Gels 367
13.4	Selected Chemical Warfare Agents and Decont Reaction
	Schemes 369
13.4.1	Sulfur Mustard (HD) 370
13.4.1.1	Hydrolysis 370
13.4.2	Sarin (GB) 370
13.5	Soman (GD) 372
13.6	VX 372
13.7	Catalysis in Decontamination 373
13.8	Decont Procedures 375
13.8.1	Generalities 376
13.8.2	Equipment Decontamination 376
13.8.2.1	Wet Procedures 376
13.8.2.2	Dry Procedures 378
13.8.2.3	Clothing and Protective Clothing 378
13.8.2.4	Decontamination of Personnel 379

13.8.2.5	Rapid Decontamination of Personnel and Personal Gear 379
13.8.2.6	Thorough Decontamination of Personnel 380
13.9	Conclusions and Outlook 380
	References 381
14	Principles and Practice of Disinfection of Biological Warfare Agents -
	How Clean is Clean Enough? 383 Andre Richardt and Birgit Hülseweh
14.1	
14.1.1	General Principles of Disintection and Decontamination 384 Definition of Terms 384
14.1.2	Physical Methods of Disinfection 385
14.1.3	Chemical Methods of Disinfection 385
14.2	Mechanisms of Action of Biocides against Microorganisms 385
14.2.1	Chemicals for Disinfection 386
14.2.2	Fumigation – Well-Known for Decontamination of Objects 388
14.2.2.1	Fumigation with Ethylene Oxide 388
14.2.2.2	Fumigation with Chlorine Dioxide Gas 388
14.2.2.3	Fumigation with Formaldehyde Gas 389
14.2.2.4	Vaporized Hydrogen-Peroxide (VHP) 389
14.3	Levels of Disinfection 390
14.4	Biological Target Sites of Selected Biocides 393
14.4.1	Viral Target Sites 393
14.4.2	Bacterial Target Sites 394
14.5	The Spores Problem 395
14.6	Inactivation as Kinetic Process 399
14.7	Evaluation of Antimicrobial Efficiency 401
14.8	Carrier Tests versus Suspension Tests 403
14.9	Resistance to Biocide Inactivation – a Growing Concern 405
14.9.1	Resistance of Viruses 406
14.9.2	Resistance of Bacteria 407
14.10	New and Emerging Technologies for Disinfection 408
14.11	"Is Clean Clean Enough" or "How Clean Is Clean Enough"? 408
	References 409
15	Radiological/Nuclear Decontamination - Reduce the Risk 411
15	Nikolaus Schneider
15.1	Why Is Radiological/Nuclear Decontamination So Special? 412
15.2	Contamination 414
15.2.1	Nuclear Weapons 414
15.2.1.1	Nuclear Fallout Contaminates the Ground 414
15.2.1.2	Rainout/Washout 415
15.2.2	Radiological Contaminations – Radiological Dispersal Device
	(RDD) 416
15.3	Decontamination 418
15.3.1	Decontamination Efficiency Calculation 418

Contents	
15.3.2	Decontamination Procedures for RN Response 420
15.3.3	RN Decontamination Agents 421
15.3.3.1	Surfactant 422
15.3.3.2	Chelating Agent 424
15.3.4	Specific Decon Processes, Alternative Procedures 424
15.3.4.1	Spraying/Extraction Systems 425
15.3.4.2	Surface Ablation Techniques 426
15.4	Conclusions and Outlook 428
	References 429
	Part VI CBRN Risk Management – Are We Prepared to Respond? 431
16	Preparedness 433
	Marc-Michael Blum, Andre Richardt, and Kai Kehe
16.1	Introduction to Risk Management 433
16.2	Key Elements Influencing a Counter-CBRN Strategy 436
16.3	A Special Strategy for CBRN 438
16.3.1	Chemical Threats 440
16.3.2	Biological Threats 443
16.3.3	Radiological Threats 447
16.3.4	Nuclear Threats 450
16.4	Proliferation Prevention 456
16.5	Active Countermeasures 458
16.6	If Things Get Real: Responding to a CBRN Event 459
16.6.1	Fundamentals of Installation of a Response 459
16.6.2	Detection, Reconnaissance, and Surveillance 461
16.6.3	Risk Assessment 462
16.6.4	CBRN Warning and Reporting 464
16.6.5	Command and Control, Communication 465
16.6.6	Technical Response 466
16.6.7	Medical Response 468
16.6.8	Risk Communication 470
16.6.9	Medical Support and Post-disaster Recovery 472
16.7	Research 473
16.8	Aftermath Action – Lessons Learned 474
16.9	Conclusions and Outlook 475

Index 479

References 476

ΧIV