Intr	oduction	IX
1	Educational Minimum: Manufacture, Structure, and Mechanical Properties of Polyethylene Resins	1
1.1	Classification and Applications of Polyethylene Resins	1
1.2	Catalysts for Synthesis of Polyethylene Resins	4
1.3	Industrial Processes for the Manufacture of Polyethylene Resins	6
1.4	Chemistry of Ethylene Polymerization Reactions	8
1.5	Molecular Weight Distribution of Polymers and Methods of its Analysis	11
1.6	Examples of Molecular Weight Distribution of Polyethylene Resins	14
1.7	Copolymer Statistics and its Application to Description of LLDPE and VLDPE Resins	20
1.8	Compositional Uniformity of Commercial Polyethylene Resins	22
1.9	Morphology of Polyethylene Resins	26
1.10	Mechanical Deformation of Polyethylene Resins	29
Refe	erences	31
2	Melt Index and Melt Flow Ratio of Polyethylene Resin	35
2.1	Introduction	35
2.2	Basics of Polymer Rheology; Melt Flow Through a Capillary	37
	2.2.1 Flow of Polymer Melt Through a Cylindrical Capillary	39
	2.2.2 Melt Index of Newtonian Liquid	40
2.3	Melt Flow of Monodisperse Polyethylene Resins	41
2.4	Additivity Rules for Viscosity; Calculation of Melt Indexes and	
	Melt Flow Ratios from Molecular Weight Distribution Data	43
	 2.4.1 Additivity Rules for Zero-Shear Viscosity η₀	43
	for Flow of Non-Newtonian Multi-Component Melt	44

2.5	Examples of Melt Flow Rates and Melt Flow Ratios for Polyethylene			
	Resins of Different Types	48		
	2.5.1 LLDPE Resins Produced with Supported Ziegler-Natta Catalysts	48		
	2.5.2 HDPE Resins with Broad Molecular Weight Distributions	51		
	2.5.3 Effect of Long-Chain Branching	53		
Refe	erences	54		
3	Melting Point of Polyethylene Resin			
3.1	Introduction	57		
3.2	Melting Point of HDPE Resin	58		
3.3	DSC Melting Curves and Melting Points of LLDPE and VLDPE Resins			
3.3	Produced with Single-Site Catalysts	61		
	3.3.1 Crystallization Process of Compositionally Uniform Ethylene/	O.		
	α-Olefin Copolymers	64		
	3.3.2 Model for Secondary Crystallization	65		
	3.3.3 Combined DSC Model for LLDPE and VLDPE Resins	66		
3.4	DSC Melting Curves and Melting Points of LLDPE Resins Produced			
J.4	with Multi-Site Ziegler-Natta Catalysts	68		
Dof	,	71		
Ker	erences	/1		
4	Crystallinity Degree and Density of Polyethylene Resins	73		
4.1	Crystallinity Degree	73		
	4.1.1 Measurement Methods	73		
	4.1.2 Definition of Crystallinity Degree of LLDPE and VLDPE Resins			
	Based on Copolymer Statistics	75		
4.2	Density	76		
	4.2.1 Measurement Methods	<i>7</i> 7		
	4.2.2 Physical Meaning of Polyethylene Density	<i>7</i> 7		
Ref	erences	80		
5	End-Use Mechanical Properties of Polyethylene Film	83		
5.1	Mechanical Properties of Polyethylene Resins	83		
5.1	5.1.1 Effect of Testing Speed on Mechanical Properties	84		
	5.1.2 Orientation in Polyethylene Film	85		
E 0				
5.2	F 8	87 87		
	5.2.1 Description of Dart Impact Test	89		
	5.2.2 Model of Dart Impact Test	92		
	UILUU I I I I I I I I I I I I I I I I I	,_		

		5.2.2.2 Comparison of Film Made from Ethylene/Butene and	
		Ethylene/Hexene Copolymers	93
		5.2.2.3 Effect of Copolymer Composition	94
		5.2.2.4 Compositionally Uniform and Compositionally	
		Nonuniform Resins	95
5.3		Strength of LLDPE and LDPE Film	97
	5.3.1	Description of Tear Test	97
	5.3.2	Physical Details of Tear Test	97
	5.3.3	Model of Tear Test	102
		5.3.3.1 Effect of Pendulum Speed	107
		5.3.3.2 Effects of Mechanical Properties of Resins	107
		5.3.3.3 Effect of Film Orientation	108
		5.3.3.4 Comparison of Tear Strength of Ethylene/Butene and	
		Ethylene/Hexene Copolymers	110
		5.3.3.5 Low Density Polyethylene	110
	5.4	Comparison of Factors Determining Results of Tear Test	
		and Dart Impact Test of LLDPE Film	111
Ref	erence	s	112
6	End-	Use Testing of High Molecular Weight HDPE	
	and i	MDPE Resins	115
6.1	Top L	oad Test of HDPE Containers	115
	6.1.1	Mechanics of Top Load Test	116
6.2	Dyna	mic Burst Test of HDPE Tubing and Pipes	118
6.3	Statio	Burst Test and Long-Term Fatigue in Polyethylene	119
	6.3.1	Principal Equation for Low-Stress Failure	120
	6.3.2	Physical Mechanism of Polymer Failure under Low Stress	122
6.4	Envir	onmental Stress-Cracking Resistance	125
	6.4.1	Description of ESCR Test	125
	6.4.2	Physics of Environmental Stress Cracking	126
	6.4.3	Structural Parameters of HDPE Resins Affecting ESCR	127
	6.4.4	Relationship between ESCR and Long-Term Fatigue	
		in Polyethylene	130
	6.4.5	Mechanism of Environmental Stress Cracking	132
Ref	erence	s	135
_			139