Table of Contents

${\bf Symmetric\ Cryptosystems}$

An Enciphering Scheme Based on a Card Shuffle	1
Tweakable Blockciphers with Beyond Birthday-Bound Security Will Landecker, Thomas Shrimpton, and R. Seth Terashima	14
Breaking and Repairing GCM Security Proofs	31
On the Distribution of Linear Biases: Three Instructive Examples Mohamed Ahmed Abdelraheem, Martin Âgren, Peter Beelen, and Gregor Leander	50
Substitution-Permutation Networks, Pseudorandom Functions, and Natural Proofs	68
Invited Talk	
The End of Crypto Jonathan Zittrain	86
Secure Computation I	
Must You Know the Code of f to Securely Compute f ?	87
Adaptively Secure Multi-Party Computation with Dishonest Majority	105
Collusion-Preserving Computation	124
Secret Sharing Schemes for Very Dense Graphs	144

Attribute-Based and Functional Encryption

Functional Encryption with Bounded Collusions via Multi-party	1.00
Computation	162
New Proof Methods for Attribute-Based Encryption: Achieving Full Security through Selective Techniques	180
Dynamic Credentials and Ciphertext Delegation for Attribute-Based Encryption	199
Functional Encryption for Regular Languages Brent Waters	218
Proof Systems	
Secure Database Commitments and Universal Arguments of Quasi Knowledge	236
Succinct Arguments from Multi-prover Interactive Proofs and Their Efficiency Benefits	255
Protocols	
On the Security of TLS-DHE in the Standard Model	273
Semantic Security for the Wiretap Channel	294
Multi-instance Security and Its Application to Password-Based Cryptography	312
Hash Functions	
Hash Functions Based on Three Permutations: A Generic Security Analysis	330

Table of Contents	XIII
To Hash or Not to Hash Again? (In)Differentiability Results for H^2 and HMAC	348
New Preimage Attacks against Reduced SHA-1	367
Stam's Conjecture and Threshold Phenomena in Collision Resistance John Steinberger, Xiaoming Sun, and Zhe Yang	384
Composable Security	
Universal Composability from Essentially Any Trusted Setup	406
Impossibility Results for Static Input Secure Computation Sanjam Garg, Abishek Kumarasubramanian, Rafail Ostrovsky, and Ivan Visconti	424
New Impossibility Results for Concurrent Composition and a Non-interactive Completeness Theorem for Secure Computation	443
Black-Box Constructions of Composable Protocols without Set-Up	461
Privacy	
Crowd-Blending Privacy	479
Differential Privacy with Imperfect Randomness Yevgeniy Dodis, Adriana López-Alt, Ilya Mironov, and Salil Vadhan	497
Leakage and Side-Channels	
Tamper and Leakage Resilience in the Split-State Model	517
Securing Circuits against Constant-Rate Tampering	533
How to Compute under \mathcal{AC}^0 Leakage without Secure Hardware	552

Invited Talk

Security Problem	570
Ernie Brickell	
Signatures	
Group Signatures with Almost-for-Free Revocation	571
Tightly Secure Signatures and Public-Key Encryption	590
Implementation Analysis	
Efficient Padding Oracle Attacks on Cryptographic Hardware	608
Public Keys	626
Secure Computation II	
Multiparty Computation from Somewhat Homomorphic Encryption Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias	643
Near-Linear Unconditionally-Secure Multiparty Computation with a Dishonest Minority	663
A New Approach to Practical Active-Secure Two-Party Computation Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra	681
Black-Box Separation	
The Curious Case of Non-Interactive Commitments – On the Power of Black-Box vs. Non-Black-Box Use of Primitives	701

Cryptanalysis	
Efficient Dissection of Composite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial Search Problems	719
Resistance against Iterated Attacks by Decorrelation Revisited Ash Bay, Atefeh Mashatan, and Serge Vaudenay	741
Quantum Cryptography	
Secure Identity-Based Encryption in the Quantum Random Oracle Model	758
Quantum to Classical Randomness Extractors	776
Actively Secure Two-Party Evaluation of Any Quantum Operation Frédéric Dupuis, Jesper Buus Nielsen, and Louis Salvail	794
Key Encapsulation and One-Way functions	
On the Impossibility of Constructing Efficient Key Encapsulation and Programmable Hash Functions in Prime Order Groups	812
Hardness of Computing Individual Bits for One-Way Functions on Elliptic Curves	832
Homomorphic Evaluation of the AES Circuit	850
Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP	868

Author Index

Table of Contents

XV

887