

Contents

Part I Introduction

1	Introduction to Microscopy Techniques	3
1.1	Which is More Valid: Information Obtained by Eyes or by Hand?	3
1.2	Transmission Electron Microscopy	5
1.2.1	Analytical TEM	5
1.3	Scanning Electron Microscopy (SEM)	7
1.4	Atomic Force Microscopy	7
	References	9

Part II Biological Related (Hydrated) Matter

2	Visualization of Organic-Inorganic Nanostructures in Liquid	13
2.1	Introduction	13
2.2	Analytical Techniques Employed for the Characterisation of Colloidal Systems	15
2.3	Transmission Electron Microscopy: Experimental Setup, Sample Preparation and Potential Artefacts	15
2.4	Cryogenic Transmission Electron Microscopy (Cryo TEM): Experimental Setup, Sample Preparation and Potential Artefacts	16
2.5	Laser Light Scattering Versus Electron Microscopy	20
2.6	Freeze-Etching and Freeze-Fracturing of Nanoemulsions for Transmission Electron Microscopy (FF-TEM): Experimental Setup, Sample Preparation and Potential Artefacts	23
2.7	Scanning Electron Microscopy, Cryo SEM and Freeze-Fracture SEM: Experimental Setup, Sample Preparation and Potential Artefacts	25

2.8	Recent Advances: Cryo Analytical TEM (cryo ATEM)	27
	References	28
3	Macromolecular Distributions in Biological Organisms In Vivo	31
3.1	Introduction	31
3.2	AFM Tuning Parameters Used for the Imaging of the Epoxy Embedded Biological Samples	34
3.3	Dependence of the AFM Phase and Topographical Contrast on the Integrity of Cellular Protein Molecules	35
3.4	Correlative AFM/TEM Analysis of the Protein Preservation in the Samples, Prepared in Accordance with Different Freeze-Substitution Protocols	38
3.5	Identification of the Cell Constituents in AFM Phase Image Using AFM and TEM Complementary Couples of Images	41
3.6	Interpretation of the TEM Images Obtained from the Epoxy Fixed Sample Using Complementary AFM Data	43
3.7	Difficulties in the AFM Image Interpretation	45
3.8	Conclusion	45
	References	46
4	Structure of the Biological Membrane (Detection of the Membrane Components In Vivo)	49
4.1	Introduction	49
4.2	Cellular Membrane: Components and Functions	49
4.3	Practical Aspects of Sample Preparation, Sources of Error and Common Artefacts	50
4.4	Plasma Membrane by TEM	52
4.5	Plasma Membrane by AFM	58
	References	59
5	Structural and Analytical Chemical Analysis of the Organic-Inorganic Components in Biomimetic Tissue	61
5.1	Introduction	61
5.2	General Mechanism of Biomimetic Tissue	62
5.3	High Resolution Microscopical and Analytical Techniques Used for the Investigation of the Mineral Phase	63
5.4	Correlative AFM-TEM	66
5.5	Sample Preparation Procedure	71
5.6	Polysaccharides-Protein Filaments	73
5.7	Analytical TEM	73
	References	74

6	Cellular Dynamics (Protein Transport, Mineralization In vivo)	77
6.1	Introduction	77
6.2	Detection of the Macromolecular Content of a Cell by AFM and its Interpretation Using Complementary AFM-TEM Analysis.	78
6.3	Spherules Involved in Elaboration of Crustacean Cuticle During the Molt Cycle: A Correlative TEM-AFM Study	81
	References	83
7	Tomography of the Hydrated Materials	85
7.1	Introduction	85
7.2	Cryo TEM Tilt Series Based Tomography	86
7.3	Cryo AFM Serial Section Tomography	87
	References	92

Part III Polymer-Based Matter

8	Morphology in Organic-Inorganic Composites	97
8.1	Introduction	97
8.2	What is the Morphology of the Composite Material Containing Low Aspect Ratio/Platy/Fibrous Filler Particles?	98
8.3	Do the Filler Substrates with Different Charge Densities Affect the Morphology?	105
8.4	Do Different Filler Surface Modifications Affect Morphology?	107
8.5	What is the State of Filler Alignment in the Composite?	108
8.6	How is the Morphology Developed When Polymer is Dispersed in Polymer?	109
8.7	What Additional Information Can Be Generated About Composites on Combining Different Techniques?	111
	References	113
9	Interface Morphology	115
9.1	Introduction	115
9.2	What is the Impact of Small Amount of Compatibilizer on the Polymer Morphology?	115
9.3	What is the Composition of Interface in Polymer/Compatibilizer/Filler Nanocomposite?	119
9.4	What are the Morphological Features of Polymer Blends Stabilized by Nanoparticles?	120
9.5	How Does the Interfacial Morphology in Blends Change as a Function of Different Compositions?	122

9.6	How Does the Morphology in the Blends Evolve When Specific Processing Conditions are Used?	124
9.7	How Does the Morphology in the Blends Seem in 3D Microscopic Model?	125
9.8	What is the Morphology in a Block Copolymer?	125
	References	125
10	Surface and Volume Characterization	127
10.1	Introduction	127
10.2	What is the Overall Morphology in the Volume of the Sample?	127
10.3	Which Defects in the Volume of the Samples can be Detected?	132
10.4	How Does the Surface Morphology Change as a Function of Synthesis Equipment?	135
10.5	How Does the Surface Morphology of Particles Change as a Function of Reaction Conditions?	135
10.6	What is the Surface and Volume Morphology in Particle Decorated Particles and Hollow Inorganic Particles?	142
10.7	What is the Volume Morphology in a Polymer Monolith Formed by Association of Primary Particles?	143
	References	144
11	Confirmation of Surface Reactions	147
11.1	Introduction	147
11.2	Has the Reaction on Clay Surface Taken Place?	147
11.3	How can the Visual Characterization Confirm the Surface Reaction?	149
11.4	How can EDAX and EELS Quantify the Success of Surface Reactions?	158
	References	161
12	Interactions Between Components	163
12.1	Introduction	163
12.2	Is There an Interaction Between the Polymer Chains and the Filler Surface?	163
12.3	What is the Interaction of the Surface of Particles with External Species?	169
12.4	How Does the Surface Interact with Charged Substrate, or Stimulants Like Temperature, Salt, Sonication etc.?	170
12.5	What is the Interaction Between Polymer Particles Grafted by Another Polymer Layer?	172
12.6	How is One Inorganic Species Interacting with the Surface of the Other (Decoration of the Surface)?	173

12.7	How Does the Solvent Interact with the Morphology?	179
	References	181
13	Nano to Micro and Macro Characterization	183
13.1	Introduction	183
13.2	What is the Morphology of the Porous Polymer Network?	183
13.3	What is the Morphology of Polymeric Films on Substrates?	189
13.4	What is the Morphology of an Inorganic Macroporous Network?	191
13.5	What is the Photonic Crystal Morphology?	193
	References	197