

MOLECULAR
BIOLOGY
INTELLIGENCE
UNIT

THE IMPACT OF SHORT
INTERSPERSED ELEMENTS
(SINES) ON THE HOST
GENOME

Richard J. Maraia

National Institute of Child Health and Human Development
National Institutes of Health
Bethesda, Maryland, USA

Springer

New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest

R.G. LANDES COMPANY
AUSTIN

CONTENTS

Preface	xiii
1. Alu Elements as a Source of Genomic Variation:	
Deleterious Effects and Evolutionary Novelties	1
<i>Damian Labuda, Ewa Ziętkiewicz and Grant A. Mitchell</i>	
1. Introduction	1
2. Alu Elements and Human Diseases	3
3. Evolutionary Novelties	12
4. Conclusion	18
2. Origin and Evolution of Alu Repetitive Elements	25
<i>Jerzy Jurka</i>	
1. Introduction	25
2. Origin and Early Evolution of Alu Predecessors and Related Genes	26
3. The Origin of Dimeric Alu Gene(s)	29
4. Subfamily Structure of Alu Repeats	30
5. Discussion	37
3. SINE Master Genes and Population Biology	43
<i>Prescott L. Deininger and Mark A. Batzer</i>	
1. Concerted Evolution of SINES	43
2. Master Genes	44
3. Subfamily Formation	44
4. The Nature of Master Genes	45
5. The BC1 RNA Gene as an ID Master Element	46
6. The Frequency of Master Genes	48
7. Master Genes vs. Master Subfamilies	48
8. Recent Alu Insertions	48
9. SINES as Molecular Fossils	53
10. Population Fixation and Concerted Evolution of SINES	54
11. SINES as Markers of Populations	55
12. SINES as Markers for Forensic Identity Testing	56
4. Evolution of tRNA-Derived SINES	61
<i>Norihiro Okada and Kazuhiko Ohshima</i>	
1. Introduction	61
2. Most SINES Are Derived From tRNA	61
3. A General Strategy for Construction of a tRNA-Like Secondary Structure for SINES, with a Specific Example	62
4. Several Distantly Related SINES Exhibit Similarities	68
5. A Possible Model for the Initial Generation of tRNA-Derived SINES	69
6. The Possibility of Horizontal Transmission	75

5. SINEs as a Genomic Scrap Yard: An Essay on Genomic Evolution	81
<i>Wojciech Makalowski</i>	
1. Introduction	81
2. SINEs and Recombination Events	85
3. SINEs as Translated Parts of Host Genes	85
4. SINEs as Transcription Promoters	92
5. SINEs as a Source of Polyadenylation Signals	92
6. SINEs as a Source of Regulatory Elements	95
7. SINEs and Chromatin Structure	97
8. SINEs and New Gene Functions	98
9. Conclusion	98
6. Alu: What's the Use?	105
<i>Carl W. Schmid and Carol M. Rubin</i>	
1. Abstract	105
2. Background	106
3. Mobility of Alu Repeats: Isolating a Source Gene	108
4. Alu Methylation Requires a Functional Explanation	110
5. Transcriptional Expression of Alus	113
6. Conclusion	117
7. SINE-Derived Motifs and the Regulation of RNA	
Polymerase II Transcripts	125
<i>Frédérique Vidal and François Cuzin</i>	
1. Introduction	125
2. Modulation of Expression of Structural Genes by SINEs	126
3. Conclusion	128
8. Alu Silencing Mechanisms: Implications for the Modulation of Local Chromatin Structure	133
<i>Bruce H. Howard, Valya R. Russanova and Ella W. Englander</i>	
1. Transcriptional Silencing of Alu Elements In Vivo	133
2. Mechanisms of Repression	134
3. Consequences of Transcriptional Competence	136
4. Alu Elements as Cis-Acting Chromatin Elements	136
5. Conclusions	138

9. Activation of RNA Polymerase III Transcription of Human Alu Elements by Adenovirus Type 5 and Herpes Simplex Virus Type 1	143
<i>Barbara Panning and James R. Smiley</i>	
1. Introduction	143
2. Results	144
3. Discussion: Possible Mechanisms and Implications.....	155
10. Alu-Family SINE RNA: Interacting Proteins and Pathways of Expression	163
<i>Richard J. Maraia and Jasmit Sarrova</i>	
1. Abstract	163
2. Introduction	164
3. Recent Progress.....	174
4. Future Directions	184
5. Conclusions	188
11. SINEs and Trans-Acting Factors	197
<i>Glen W. Humphrey</i>	
1. Introduction	197
2. SINEs as Binding Sites for Pol III Transcription Factors	198
3. SINEs as Binding Sites for Pol II Transcription Factors	207
4. SINEs as Origins of Replication.....	214
12. Quantitative Study of Alu Repeated Sequences in Primate Genomes, Yielding Insight into Their Sources and Evolution	223
<i>Roy J. Britten</i>	
1. Introduction	224
2. Lack of Alu Lineages	224
3. Relationship of Different Positions within a Site.....	228
4. Global Correlations in the Alu Sequence	228
5. Conclusion	229
Index	233