

E42, E6, E59

NONLINEAR EXCITATIONS IN BIOMOLECULES

Les Houches School, May 30 to June 4, 1994

Editor

M. Peyrard

Springer
Berlin
Heidelberg
New York
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Tokyo

Les Editions de Physique
France
Avenue du Hoggar
Zone Industrielle de Courtabœuf
B.P. 112
91944 Les Ulis cedex A

North America
PCG Inc.
875-81 Massachusetts Avenue
Cambridge MA 02139 USA

E 16/123

95/275

ISBN 3-540-59250-4 Springer-Verlag Berlin Heidelberg New York
ISBN 2-86883-247-4 Les Editions de Physique Les Ulis

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad-casting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the French and German Copyright laws of March 11, 1957 and September 9, 1965, respectively. Violations fall under the prosecution act of the French and German Copyright Laws.

© Springer-Verlag Berlin Heidelberg
and
© Les Editions de Physique Les Ulis 1995

Printed in France

CONTENTS

LECTURE 1

The intersection of nonlinear science, molecular biology, and condensed matter physics. Viewpoints

by J.A. Krumhansl

1. Introduction.....	1
2. Viewpoints	2
2.1. Scientific objectives differ intrinsically	2
2.2. Differentiation	3
2.3. Biomolecules as polymers are treated realistically these days	4
2.4. Models play an important role in Science.....	6
2.5. Towards more and finer measurements.....	7
2.6. Some paradigms in current nonlinear science	8
3. Concluding remarks.....	9

LECTURE 2

Introduction to solitons and their applications in physics and biology

by M. Peyrard

1. The specificity of nonlinear systems	11
2. The concept of soliton	12
3. Conditions to have solitons	15
4. The different classes of solitons.....	16
5. Solitons are everywhere!.....	18
6. The formation of solitons: nonlinear energy localization	21
7. Conclusion.....	24

CHAPTER I

IA, structure and function..... 27

LECTURE 3

Selected topics in molecular biology, in need of “hard” science

by C. Reiss

1. DNA Structure	29
2. Gene expression.....	36
3. Control and regulation of gene expression: physical aspects	46
4. The protein folding problem.....	50
5. Conclusion.....	54

LECTURE 4

Modelling the DNA double helix: techniques and results by R. Lavery

1. Introduction.....	57
2. Modelling techniques.....	58
2.1. Modelling nucleic acids using adapted coordinate systems.....	60
2.2. Conformational analysis.....	62
3. DNA fine structure.....	62
3.1. Energy surface mapping	65
3.2. Combinatorial searches.....	66
3.3. Building long sequences by superposition	71
4. Flexibility and structural transitions.....	72
4.1. Base pair opening.....	72
4.2. Backbone transitions	75
4.3. Transitions between allomorphic forms.....	77
5. DNA dynamics and large scale simulations.....	79
6. Conclusions	79

LECTURE 5

Potential-of-mean-force description of ionic interactions and structural hydration in biomolecular systems

by G. Hummer, D.M. Soumpasis and A.E. García

1. Introduction.....	83
2. The statistical-mechanical foundation of the potential-of-mean-force formalism.....	84
3. Interactions of nucleic acids with ionic solutions	86
4. A statistical-mechanical theory of biomolecular hydration	87
4.1. Introductory remarks.....	87
4.2. Density expansion in inhomogeneous liquid systems	88
4.3. The water-density profile at the interface of ice and water	89
4.4. Hydration of biological macromolecules: Results for DNA	92
5. Conclusions	96

LECTURE 6

Inelastic neutron scattering studies of oriented DNA

by H. Grimm and A. Rupprecht

1. Introduction.....	101
2. Self correlation	103
2.1. Time-of-flight spectra.....	103
2.2. Scattering function	105
2.3. Eigenvalue density	106
2.4. Analysis of self correlation spectra.....	107

3. Distinct correlation	110
4. Central component	112
5. Conclusions	113

LECTURE 7

Model simulations of base pair motion in B-DNA

by M.A. Collins and F. Zhang

1. Introduction.....	117
2. What sort of model?	118
3. The model	118
3.1. Model potential surface	120
4. Some dynamical averages of this model DNA motion	121
4.1. Hydrogen bond breaking	122
4.2. RMS “atomic” displacements	123
4.3. Large amplitude excitations	124
4.4. Correlations	124
5. Concluding remarks.....	124

LECTURE 8

A nonlinear model for DNA melting

by T. Dauxois and M. Peyrard

1. Introduction.....	127
2. The nonlinear dynamical model	129
3. Dynamics of the melting	130
4. Formation of denaturation bubbles	133
5. Statistical mechanics	134
5.1. Melting transition	134
5.2. Entropy driven DNA denaturation	134
6. Conclusion.....	136

LECTURE 9

Dynamics of conformational excitations in the DNA macromolecule

by A.M. Kosevich and S.N. Volkov

1. Introduction.....	137
2. The model constructing	138
3. The conformational vibrations	140
4. The conformational solitons	142

LECTURE 10**Nonlinear dynamics of plasmid pBR322 promoters**
by M. Salerno

1. Introduction.....	147
2. The model	148
3. Numerical experiment and analysis.....	149
4. Conclusions.....	153

LECTURE 11**Helical geometry and DNA models**
by G. Gaeta

1. Introduction.....	155
2. Selection of relevant degrees of freedom.....	156
3. Description of the interactions	157
4. DNA hamiltonians	159
5. DNA dynamics	160
6. Dispersion relations, and breather solutions.....	160
7. Soliton solutions.....	161
8. Ising model approach.....	162
9. Conclusions.....	163

LECTURE 12**Nonlinear localized excitations and the dynamics of H-bonds in DNA**
by S. Flach and C.R. Willis

1. Introduction.....	165
2. H-bond dynamics.....	166
2.1. Model classes.....	166
2.2. Nonlinear localized excitations	167
3. Functioning with NLEs - phonon scattering	169

CHAPTER II

Proteins, conformation and dynamics.... 175

LECTURE 13

Proteins and the physics of complexity

by H. Frauenfelder

1. Proteins	177
2. The approach	179
3. The structure of proteins	179
4. The energy landscape	180
4.1. The experimental evidence for conformational substates	181
4.1.1. Ligand binding to myoglobin	181
4.1.2. Spectroscopic hole burning	184
4.2. The hierarchy of conformational substates	184
4.2.1. Taxonomic conformational substates	185
4.2.2. Statistical substates	185
4.3. Conformational excitations	186
4.4. Theoretical and computational studies	186
5. Some remarks	186

LECTURE 14

Multi-basin dynamics of a protein in aqueous solution

by A.E. García

1. Introduction	191
2. Description of the system	192
3. Results and discussion	193
3.1. Localized non-linear motions	193
3.2. Delocalized non-linear motions	196
3.2.1. Tree analysis	197
3.3. Molecule optimal dynamical coordinates (MODC)	199
4. Conclusions	206

LECTURE 15

Nonlinear excitations in molecular crystals with chains of peptide bonds

by M. Barthes

1. Introduction	209
2. Acetanilide and derivatives	209
2.1. Infrared results	211

2.2. Raman scattering.....	213
2.3. Low temperature neutron diffraction	213
2.4. Discussion.....	215
3. N-methylacetamide	215
4. L-alanine and polyalanines	219
5. Nucleotides, polypeptides and proteins	219
6. Conclusion.....	220

LECTURE 16

Low temperature Raman spectra of acetanilide and its deuterated derivatives: comparison with normal mode analysis

by G. De Nunzio

1. Introduction.....	223
1.1. Bioenergetics	223
1.1.1. Davydov's soliton.....	224
1.2. Where ACN comes in.....	224
1.3. Optical anomalies in ACN	225
1.4. Theories and experiments	225
2. Normal mode analysis.....	226
2.1. The program CHARMM.....	226
2.2. Results	227
2.2.1. The range 1400-1700 cm ⁻¹	227
2.2.2. Some other frequency range.....	230

LECTURE 17

Conformational dynamics of proteins: beyond the nanosecond time scale

by H. Grubmüller, N. Ehrenhofer and P. Tavan

1. Introduction.....	231
2. A simplified protein model	232
3. Configurational space and conformational substates	233
4. Conformational coordinates from neural clustering.....	235
5. Conformational coordinates from principal component analysis.....	237
6. Summary and conclusion	239

LECTURE 18

Motions and correlations of the transmembrane domain of a protein receptor studied by molecular dynamics simulation

by N. Garnier, D. Genest and M. Genest

1. Introduction.....	241
2. Materials and methods.....	241
2.1. Molecular dynamics simulation.....	241
2.2. Correlations	242
2.3. Propagation of a local perturbation.....	242
3. Results.....	243
4. Discussion and conclusion	246

CHAPTER III

Energy and charge transport..... 247

LECTURE 19

Solitary waves in biology

by A.C. Scott

1. Introduction.....	249
2. The nerve impulse.....	250
2.1. Linear and nonlinear diffusion.....	250
2.2. The Hodgkin-Huxley equations	250
3. Solitons in protein.....	254
3.1. Polarons and conformons	254
3.2. Vibrational energy transport	255
3.3. Quantum theory	257
3.4. Thermal effects.....	258
3.5. Crystalline acetanilide.....	260
3.6. Transport of electronic charge.....	261
3.7. Protonic solitons	262
3.8. Biological applications.....	262
4. Conclusions	265

LECTURE 20

Exact two-quantum states of the semiclassical Davydov model and their thermal stability

by L. Cruzeiro-Hansson and V.M. Kenkre

1. Introduction.....	269
2. The Davydov model.....	270

3. Two-quantum states and their thermal stability	271
4. General remarks	274

LECTURE 21

Post-soliton quantum mechanics

by D.W. Brown

The inverse problem	280
General properties of Wannier states	281
Weak coupling limits	283
Conclusion	286

LECTURE 22

Dynamic form factor for the Yomosa model for the energy transport in proteins

by A. Neuper and F.G. Mertens

1. Solitons in muscle fibers	287
2. Form factors in the Toda lattice	287
2.1. Simulation results	289
2.2. Cnoidal-wave approach	290
2.3. The soliton limit	292
3. Summary	293

LECTURE 23

Energy and charge transfer in photosynthesis

by W. Mäntele

1. Introduction. Photosynthesis: a physico-chemo-biologist's view	295
2. The lipid bilayer membrane as a structural basis	296
3. Pigments used for light absorption in photosynthesis	298
4. Pigments and proteins form pigment-protein-complexes	300
5. Antenna systems of plants and bacteria	302
6. From antennae to reaction centers: converting and stabilizing light energy	304
7. Information on structure and composition of reaction centers	306
8. Characteristics of a "quinone type" reaction center	307
9. Primary processes, forward, and reverse electron transfer and the corresponding rates in the reaction center	308
10. Why do reaction centers use quinones as electron acceptors?	310
11. What is the molecular basis for external reorganization energy in the reaction center? ..	312
12. Concluding remarks	314

LECTURE 24

The role of nonlinearity in modelling energy transfer in Scheibe aggregates by O. Bang, P.L. Christiansen, K.Ø. Rasmussen and Y.B. Gaididei

1. Introduction	317
2. Scheibe aggregates	318
2.1. Langmuir-Blodgett films and Scheibe aggregates	318
2.2. Experiments on Langmuir-Blodgett Scheibe aggregates	319
2.3. Applications, and the connection with photosynthesis	321
2.4. Physical models	324
3. The nonlinear model	325
3.1. Derivation	325
3.2. Parameter values for a monolayer oxacyanine LB Scheibe aggregate	327
3.3. Approximations of the colored noise	329
3.4. Choosing the initial condition	330
3.5. Nonlinear coherence time for the ground state solitary wave solution	331
3.6. The role of collapse	333
4. Conclusion	335

LECTURE 25

Protons in hydrated protein powders

by G. Careri, F. Bruni and G. Consolini

1. Abstract	337
2. Proton percolation and emergence of biological function in nearly dry biosystems	338
3. Likely detection of protonic polarons in percolative water clusters adsorbed on lysozyme powders	341

LECTURE 26

Nonlinear models of collective proton transport in hydrogen-bonded systems

by M. Peyrard

1. Introduction	349
2. The physical problem and the first answers	350
3. The A-D-Z soliton model for proton transport	351
4. Is there an experimental evidence of the soliton?	354
5. Conclusion	359

LECTURE 27**Proton-solitons bridge physics with biology**

by G.P. Tsironis

1. Introduction.....	361
2. Proton-soliton mobility	363
3. Quantum tunnelling.....	364
4. Conclusions	365
Appendix. Calculation of the classical soliton mass	365
Semiclassical correction.....	366

LECTURE 28**Neutron scattering studies of biopolymer-water systems: solvent mobility and collective excitations**

by H.D. Middendorf

1. Introduction.....	369
2. Basic relations and scattering properties.....	370
3. Globular proteins at low hydration	372
3.1. Hydration dynamics of phycocyanin in the sorption regime	372
3.2. High-resolution quasi-elastic scattering, $h\omega < 100 \mu\text{eV}$	373
3.3. Quasi-elastic and inelastic scattering with $h\omega \geq 100 \mu\text{eV}$	376
4. Highly hydrated systems: polymer and biopolymer gels	377
4.1. Structure and dynamics of aqueous gels.....	377
4.2. Quasi-elastic scattering.....	378
4.3. Inelastic scattering.....	380
5. Conclusions	381

CHAPTER IV**Beyond biological molecules..... 385****LECTURE 29****The cell's microtubules: self-organization and information processing properties**

by J.A. Tuszynski, B. Trpisová, D. Sept, M.V. Sataric and S. Hameroff

1. Background information	387
2. Assembly/disassembly modelling	389
3. The dipolar lattice and its phases.....	390
4. Dynamics in the ferroelectric phase	393

5. Stability of the spin-glass phase.....	398
6. Information capacity in various phases.....	400
7. Summary.....	403

LECTURE 30

Translation optimization in bacteria: statistical models

by F. Bagnoli, G. Guasti and P. Liò

1. Introduction.....	405
2. A dynamical model	406
3. Statistical mechanics	408
4. Concluding remarks	410

LECTURE 31

Dynamics of vibrational dissociation of a pseudo-cluster

by D. Hennig and H. Gabriel

1. Introduction.....	413
2. The model hamiltonian.....	413
3. Dynamics of the model	415
3.1. Whisker map	415
3.2. Resonance overlap	416

LECTURE 32

The step-potential model for π -electrons in hydrocarbon-systems

by C. Kuhn

1. Introduction.....	421
2. Non-linear optics	423
3. Kinks in polyacetylene: statics and dynamics	423
4. The C_{60} molecule	425

CONCLUSION..... 427