

2748-1181

Ernst-Detlef Schulze
Martyn M. Caldwell (Eds.)

Ecophysiology of Photosynthesis

With 163 Figures

Springer

Contents

Part A: Molecular and Physiological Control and Limitations

1	Dynamics in Photosystem II Structure and Function	3
	A. Trebst	
1.1	Introduction	3
1.2	Function of Photosystem II	3
1.3	Structure of Photosystem II	6
1.4	Dynamics in the D1 Protein in Rapid Turnover and Stress-Enhanced Photoinhibition	11
1.5	Photoinhibition and Environmental Stress	13
1.6	Regulation of Photosystem II by Phosphorylation	14
1.7	Conclusions	14
	References	15
2	Regulation of Photosynthetic Light Energy Capture, Conversion, and Dissipation in Leaves of Higher Plants	17
	O. Björkman and B. Demmig-Adams	
2.1	Introduction	17
2.2	The Concept of Excess Photon Flux Density	18
2.3	Regulation of Light Interception	19
2.3.1	Changes in Leaf Orientation	19
2.3.2	Changes in Leaf Reflectance	23
2.3.3	Chloroplast Movements	24
2.3.4	Changes in Chlorophyll Content and Photosynthetic Capacity	25
2.4	Regulation of Energy Dissipation	26
2.4.1	Dissipation in Metabolic Processes	26
2.4.2	Efficiency of Photochemical Energy Conversion and Extent of Nonradiative Energy Dissipation	28
2.4.3	Nonradiative Energy Dissipation and the Xanthophyll Cycle	34
2.4.4	Mechanism of Nonradiative Dissipation	41
2.5	Conclusions	44
	References	44

3	Chlorophyll Fluorescence as a Nonintrusive Indicator for Rapid Assessment of In Vivo Photosynthesis	49
	U. Schreiber, W. Bilger, and C. Neubauer	
3.1	Introduction	49
3.2	Indicator Function of Chlorophyll Fluorescence	50
3.3	Rapid Fluorescence Induction Kinetics	51
3.4	Slow Fluorescence Induction Kinetics and Fluorescence Quenching Under Steady-State Conditions	54
3.5	The Saturation Pulse Method	55
3.6	Quantum Yield and Rate Determination by Fluorescence Measurements	56
3.7	Fluorescence as an Indicator of Nonassimilatory Electron Flow	58
3.8	In Situ Measurements of $\Delta F/F'_m$ and of Relative Electron Transport Rate	62
3.9	Yield Limitation and Excessive Photon Flux Density ..	64
3.10	Conclusions	66
	References	67
4	Higher Plant Respiration and Its Relationships to Photosynthesis	71
	J.S. Amthor	
4.1	Introduction	71
4.2	Pathways and Controls of Respiration	73
4.2.1	Unique Properties of Plant Respiration and Mitochondrial Metabolism	75
4.2.2	Control of Respiration Rate	76
4.2.3	Energy Conservation During Plant Respiration	77
4.2.4	Respiration Rate and Carbohydrate Level	79
4.3	Respiration in Photosynthesizing Leaves	80
4.4	Photorespiration and Mitochondrial Metabolism	84
4.4.1	Oxidation of Photorespiratory NADH by the Respiratory Chain	84
4.4.2	Oxidation of Photorespiratory NADH via Substrate Shuttles	85
4.5	Daytime Photosynthesis and Nighttime Respiration	86
4.5.1	Light Level	87
4.5.2	CO ₂ Concentration	88
4.6	Photosynthesis and Root Respiration	89
4.7	Conclusions	90
	Appendix	91
	References	95

5	Apoplastic and Symplastic Proton Concentrations and Their Significance for Metabolism	103
	H. Pfanz	
5.1	Introduction	103
5.2	Definitions	104
5.2.1	The pH Concept	104
5.2.2	The Buffer Concept	104
5.2.3	Techniques to Determine Intra- and Intercellular pH	106
5.3	Cellular pH	107
5.3.1	The Apoplastic pH	107
5.3.2	The Symplastic pH	111
5.4	Conclusions	117
	References	118
6	The Significance of Assimilatory Starch for Growth in <i>Arabidopsis thaliana</i> Wild-Type and Starchless Mutants	123
	W. Schulze and E.-D. Schulze	
6.1	Introduction	123
6.2	The Metabolic Pathway of Assimilatory Starch Formation and the Use of Mutants to Circumvent Chloroplast Starch Formation	124
6.3	The Diurnal Starch Turnover	125
6.4	Significance of Leaf Starch for Growth	126
6.4.1	Effects of Leaf Starch on Biomass Formation	126
6.4.2	Effects of Leaf Starch on Regulation of Shoot/Root Ratios	128
6.5	The Carbon Balance	129
6.6	Conclusions	130
	References	131
7	Photosynthesis, Storage, and Allocation	133
	K. Fichtner, G. W. Koch, and H. A. Mooney	
7.1	Introduction	133
7.2	The Impact of Photosynthesis on Growth, Storage, and Biomass Allocation in Transgenic Tobacco	133
7.2.1	Photosynthesis and Growth	134
7.2.2	Photosynthesis and Biomass Allocation	135
7.2.3	Carbon and Nitrogen Storage in Relation to Photosynthesis	137
7.2.4	The Tobacco System: Conclusions	138
7.3	Allocation in Relation to Shoot and Root Activity	139
7.3.1	Resource, Growth, and Allocation	139
7.3.2	Photosynthesis, Specific Absorption Rate, and Allocation	139

7.3.3	The Radish System: Conclusions	142
7.4	Storage as Related to Resource Availability	142
7.5	Conclusions	143
	References	144
8	Gas Exchange and Growth	147
	J.S. Pereira	
8.1	Introduction	147
8.2	How Plants Grow	148
8.3	Photosynthesis and Growth Rates	150
8.4	The Importance of Allocation	153
8.5	Do Growth Rates Influence Carbon Assimilation?	155
8.6	Light Interception by Canopies and Plant Productivity	156
8.7	Phenology and Rates of Growth and Photosynthesis ..	159
8.8	Environmental Stresses Change the Relationship Between Photosynthesis and Growth	162
8.8.1	Water Deficits	163
8.8.2	Nitrogen Abundance	166
8.8.3	Temperature Effects	171
8.9	Conclusions	173
	Appendix: List of Symbols and Definitions	175
	References	175

Part B: Responses of Photosynthesis to Environmental Factors

9	Internal Coordination of Plant Responses to Drought and Evaporational Demand	185
	R. Lösch and E.-D. Schulze	
9.1	Introduction	185
9.2	Environmental and Plant-Internal Influences on Transpiration	185
9.3	Root-Leaf Signals Under Moisture Shortage Contribute to Drought Avoidance Responses of Leaves	187
9.4	Leaf Anatomy, Canopy Structure, and Stomatal Function	195
9.5	Xylem Conductivity and Leaf Conductance	197
9.6	Conclusions	199
	References	200
10	As to the Mode of Action of the Guard Cells in Dry Air	205
	I. R. Cowan	
10.1	Introduction	205

10.2	Two Seminal Experiments	206
10.3	Some Relevant Observations	208
10.3.1	On Stomatal Mechanics	208
10.3.2	Signals and Responses	211
10.3.3	Hydrology of the Epidermis	215
10.4	Hypothesis	217
10.4.1	Feedback	217
10.4.2	Of Bubbles and Balloons	219
10.4.3	Piers and Vaults	222
10.5	Conclusions	226
	References	227
11	Direct Observations of Stomatal Movements	231
	L. Kappen, G. Schultz, and R. Vanselow	
11.1	Introduction	231
11.2	The Methodical Approach	233
11.3	General Aspects	234
11.4	Stomatal Responses	235
11.4.1	Air-Humidity Response	235
11.4.2	Response to Changing CO ₂ Concentrations of the Air	238
11.4.3	Response to Heat	241
11.4.4	The Transient Phase and Other Peculiarities of the Stomatal Response	241
11.5	Conclusions	244
	References	245
12	Carbon Gain in Relation to Water Use: Photosynthesis in Mangroves	247
	M. C. Ball and J. B. Passioura	
12.1	Introduction	247
12.2	Water Relations: Why Be Conservative?	247
12.3	Implications of Conservative Water Use for Plant Function	251
12.4	Implications of Conservative Water Use for Display and Properties of Leaves	254
12.5	Coping with Excessive Light: Another By-Product of Conservative Water Use	255
12.6	Into the Future: Coping with Global Increase In Atmospheric CO ₂ Concentration	256
	References	257
13	Photosynthesis as a Tool for Indicating Temperature Stress Events	261
	W. Larcher	
13.1	Introduction	261

13.2	Development of Temperature Stress and Characteristic Responses of Photosynthesis	261
13.3	Use of Photosynthetic Responses for Determining Heat Tolerance	266
13.4.	Photosynthetic Function as a Criterion for Screening Chilling Susceptibility	267
13.5	Assay and Analysis of Freezing Events by Monitoring Photosynthesis	269
13.6	Conclusions	273
	References	274
14	Air Pollution, Photosynthesis and Forest Decline: Interactions and Consequences	279
	U. Heber, W. Kaiser, M. Luwe, G. Kindermann, S. Veljovic-Javonovic, Z. Yin, H. Pfanz, and S. Slovik	
14.1	Introduction	279
14.2	Sites of Interaction of Air Pollutants with Plants	280
14.3	The Magnitude of Fluxes into Leaves	281
14.4	Toxicity	281
14.5	Detoxification	282
14.5.1	The Path of Air Pollutants	283
14.5.2	The Fate of Nitrogen Oxides	284
14.5.3	The Fate of Ozone	285
14.5.4	The Fate of SO ₂	286
14.5.5	Acid-Dependent Cation Requirements	288
14.5.6	Interactions Between Different Air Pollutants	289
14.5.7	Interactions with Climatic Conditions	290
14.6	Tolerance Limits	290
14.7	Conclusions	292
	References	293

Part C: Plant Performance in the Field

15	Photosynthesis in Aquatic Plants	299
	J. A. Raven	
15.1	Introduction	299
15.2	Definition of the Aquatic Habitat	299
15.3	The Diversity of Aquatic Plants	299
15.4	Contribution of Aquatic Plants to Global Net Primary Productivity	302
15.5	Photon Absorption and Use by Aquatic Plants	303
15.6	Inorganic Carbon Acquisition by Aquatic Plants: When Does It Limit Net Productivity?	309

15.7	Water Relations of Intertidal Aquatic Plants in Relation to Photosynthesis	312
15.8	Conclusions	314
	References	314
16	Photosynthesis in Poikilohydric Plants: A Comparison of Lichens and Bryophytes	319
	T. G. A. Green and O. L. Lange	
16.1	Introduction	319
16.2	CO ₂ Exchange of Lichens and Bryophytes	320
16.2.1	Net Photosynthetic Rates	320
16.2.2	Compensation Points and Photorespiration	322
16.2.3	Dark Respiration Rates	323
16.2.4	Lichens and Bryophytes as Shade Plants	325
16.2.5	Thallus Water Content and Photosynthesis	326
16.2.6	Environmental CO ₂ Concentration	327
16.3	Plant Morphology and Photosynthesis	328
16.3.1	Bryophytes	329
16.3.2	Lichens	331
16.4	Water Location and Transport	332
16.4.1	Bryophytes	332
16.4.2	Lichens	332
16.5	An Upper Limit for Photosynthetic Rate?	333
16.6	Lichens and Bryophytes as Early Land Plants?	334
16.7	Conclusions	335
	References	337
17	The Consequences of Sunflecks for Photosynthesis and Growth of Forest Understory Plants	343
	R. W. Pearcy and W. A. Pfitsch	
17.1	Introduction	343
17.2	Sunflecks in Forest Understories	344
17.3	Mechanisms Regulating the Utilization of Sunflecks ..	345
17.4	Photosynthesis in Natural Sunfleck Pergimes	346
17.5	The Significance of Sunflecks to Annual Carbon Gain	349
17.6	Consequences of Sunflecks for Growth and Reproduction	353
17.7	Conclusions	356
	References	358
18	Variation in Gas Exchange Characteristics Among Desert Plants	361
	J. R. Ehleringer	
18.1	Introduction	361

18.2	Species Distribution Gradients in the Desert	361
18.3	Variation in Moisture and Temperature as Selective Forces for Photosynthetic Variation	363
18.3.1	Predictability of Precipitation	364
18.3.2	Drought Duration	368
18.3.3	Predictability of Temperature	369
18.4	Gas Exchange Patterns Among Life-Forms	370
18.4.1	Photosynthetic Pathway Distribution Among Life-Forms	370
18.4.2	Environment and Life-Form Distribution	374
18.5	Longevity and Gas Exchange	377
18.5.1	Water Use in Relation to Carbon Gain	377
18.5.2	Gas Exchange Flux Versus Set Point	377
18.5.3	Carbon Isotope Discrimination as a Measure of Intercellular Carbon Dioxide Concentration	379
18.5.4	Intercellular CO ₂ and Life History in C ₃ Plants	380
18.6	Integrating Gas Exchange Across Complex Environmental Gradients	382
18.6.1	Evaporative Gradients	382
18.6.2	Utilization of Summer Moisture Inputs	384
18.7	Conclusions	387
	References	387
19	Deuterium Content in Organic Material of Hosts and Their Parasites	393
	H. Ziegler	
19.1	Introduction	393
19.2	The Relative Deuterium Content in the Host and Parasitic Organic Material in Different Kinds of Parasite Performance	394
19.2.1	Isotope Contents of Galls	394
19.2.2	Isotope Contents of Holoparasites and Their Host Plants	395
19.2.3	Isotope Contents of Mistletoes (Hemiparasites) and Their Hosts	399
19.3	What Are the Reasons for the Isotope Discriminations?	405
19.3.1	$\delta^{13}\text{C}$	405
19.3.2	δD	406
19.4	Conclusions	407
	References	408
20	Photosynthesis of Vascular Plants: Assessing Canopy Photosynthesis by Means of Simulation Models	409
	W. Beyschlag, R. J. Ryel, and M. M. Caldwell	

20.1	Introduction	409
20.2	General Structure of Canopy Photosynthesis Models	409
20.3	The Simple Case: Single-Species Homogeneous Canopies	410
20.3.1	General Model Description	410
20.3.2	Model Validation	415
20.3.3	Case Study: How Do Different Parts of the Canopy Contribute to Total Canopy Photosynthesis?	415
20.4	Multispecies Homogeneous Canopies	416
20.4.1	Description of the Model Extensions	416
20.4.2	Case Study: Symmetric Competition	417
20.4.3	Case Study: Asymmetric Competition	418
20.5	Canopies with Nonhomogeneous Structure: Radiation Fluxes in Three Dimensions	421
20.5.1	Step 1: The Case of Single Plants	422
20.5.2	Step 2: Scaling Up from Single Plants to Plant Neighborhoods	424
20.6	Conclusions	426
	References	428
21	Effects of Phenology, Physiology, and Gradients in Community Composition, Structure, and Microclimate on Tundra Ecosystem CO ₂ Exchange	431
	J. D. Tenhunen, R. A. Siegwolf, and S. F. Oberbauer	
21.1	“Phenomenological” or “Aggregate” Models of Ecosystem CO ₂ Flux	431
21.2	Concept and General Structure of the Stand Model GAS-FLUX	434
21.3	Structural Inputs to GAS-FLUX Along Water Gradients in Tundra	437
21.4	Ecophysiological Inputs to GAS-FLUX Along Water Gradients in Tundra	439
21.4.1	CO ₂ Exchange of Vascular Plant Species of Differing Growth Forms	439
21.4.2	CO ₂ Exchange of Poikilohydric Plants	443
21.4.3	CO ₂ Exchange of the Soil	446
21.5	Simulations of Ecosystem CO ₂ Exchange	447
21.5.1	Diurnal Course of Gas Exchange of Major Tundra Structural Components	447
21.5.2	Environmental Effects on Diurnal CO ₂ Exchange and Aggregate Formulations	449
21.6	Conclusions: Future Directions of GAS-FLUX Development	453
	References	455
	Appendix	459

Part D: Global Aspects of Photosynthesis

22	Leaf Diffusive Conductances in the Major Vegetation Types of the Globe	463
	Ch. Körner	
22.1	The Significance of Leaf Conductances in Vegetation Modeling	463
22.2	Constraints of Utilizing Leaf Conductances in Vegetation Modeling	463
22.3	How Was the Data Set Compiled?	464
22.3.1	Definition of Maximum Leaf Conductance for Water Vapor	466
22.3.2	Definition of Minimum Leaf Conductance for Water Vapor	467
22.3.3	Definition of Stomatal Response Functions	468
22.4	Selection of Vegetation Types	469
22.5	Maximum Leaf Diffusive Conductances in Important Vegetation Types	470
22.6	Maximum Leaf Diffusive Conductances and Maximum Rate of Leaf Photosynthesis	473
22.7	Minimum Leaf Diffusive Conductances	474
22.8	Stomatal Responses in the Field	475
22.8.1	Long-Term Trends and Seasonal Changes	475
22.8.2	Short-Term and Diurnal Changes	478
22.9	Conclusions and Recommendations for Further Research	484
	References	485
23	Predictions and Measurements of the Maximum Photosynthetic Rate, A_{\max} , at the Global Scale	491
	F. I. Woodward and T. M. Smith	
23.1	Introduction	491
23.2	Philosophy	492
23.3	Experimental Evidence for the Soil N Supply Constraint on A_{\max}	493
23.3.1	Introduction	493
23.3.2	Experimental Detail	494
23.3.3	Results	496
23.3.4	Discussion	497
23.4	Modeling A_{\max} at the Global Scale	498
23.4.1	Introduction	498
23.4.2	Method of Predicting A_{\max} from Soil C	498
23.4.3	Validating A_{\max} Predictions	500
23.4.4	Predicting A_{\max} from Soil C and Soil N	500
23.5	Global Predictions and Tests of Soil-Based A_{\max}	501

23.6	Conclusions: Global Scale Maps of Observed and Predicted A_{max}	503
	Appendix: References for Global Measurements of A_{max}	506
	References	508
24	Remote Sensing of Terrestrial Photosynthesis	511
	C. B. Field, J. A. Gamon, and J. Peñuelas	
24.1	Remote Sensing, from the Leaf of the Globe	511
24.1.1	A Range of Approaches	512
24.2	Models: from Radiance to CO_2 Exchange	512
24.3	Remote Sensing of Photosynthetic Capacity	513
24.3.1	Absorbed Radiation	513
24.3.2	Photosynthetic Pigments	518
24.3.3	Other Compounds	519
24.4	Remote Sensing of Physiological Status	520
24.4.1	Fluorescence	520
24.4.2	Xanthophyll Pigments	521
24.4.3	Canopy Temperature	523
24.5	Remote Sensing of Environmental Factors	523
24.6	Conclusions	524
	References	524
25	Are C_4 Pathway Plants Threatened by Global Climatic Change?	529
	S. Henderson, P. Hattersley, S. von Caemmerer, and C. B. Osmond	
25.1	Introduction	529
25.2	Low Atmospheric CO_2 Concentrations and Evolution of C_4 Pathway Photosynthesis	530
25.3	Physiological Flexibility in C_4 Plants Under High CO_2 Concentrations	532
25.3.1	Coordination of Metabolism	532
25.3.2	Leakage of CO_2 from the Bundle Sheath	534
25.3.3	Translocation of Carbohydrate	537
25.3.4	Water Use Efficiency	537
25.3.5	Nitrogen Use Efficiency	537
25.4	Growth and Competition Between C_4 and C_3 Plants Under Elevated CO_2	538
25.5	Present Distributions and Diversity of C_4 Plants	539
25.6	Future Distributions of C_4 Plants	543
25.7	Conclusion	544
	References	546

**Part E: Perspectives in Ecophysiological Research
of Photosynthesis**

26	Overview: Perspectives in Ecophysiological Research of Photosynthesis	553
	E.-D. Schulze and M.M. Caldwell	
26.1	Introduction: A Historic Perspective	553
26.2	Methodology	554
26.3	The Molecular and Biochemical Venue of Photosynthetic Ecophysiology	555
26.4	Balancing Photosynthesis and Transpiration	557
26.5	Photosynthetic Performance of Different Plant Groups	558
26.6	Photosynthesis and Global Climate Change: Making Global Predictions	559
26.7	Where Will Ecophysiology of Photosynthesis Venture in the Coming Decade? We Offer Some Thoughts	561
	References	562
	Subject Index	565
	Species Index	573