Contents

Part I General Theory	y
-----------------------	---

1	A Wa	rming-U	p Example	3		
	1.1	Ergodic	Markov Chains	4		
	1.2	Almost	Sure Central Limit Theorem for Ergodic Markov			
				6		
	1.3	Central	Limit Theorem for Martingales	9		
	1.4	Time-Va	ariance in Reversible Markov Chains	13		
	1.5	Central	Limit Theorem for Reversible Markov Chains	17		
	1.6	The Spa	ace of Finite Time-Variance Functions	21		
		1.6.1	The Space \mathscr{H}_1	21		
		1.6.2	- <u>-</u>	24		
	1.7	Comme	ents and References	28		
	Refer	ences		30		
2	Cent	ral Limit	Theorems	33		
	2.1	Central	Limit Theorem for Continuous Time Martingales	36		
	2.2	The Spa	aces \mathscr{H}_1 and \mathscr{H}_{-1}	40		
	2.3	The Res	solvent Equation	45		
	2.4	Dynkin's Martingales				
	2.5	\mathcal{H}_{-1} Estimates of the Time-Variance				
	2.6	Central	Limit Theorem for Markov Processes	50		
	2.7	Some E	xamples	56		
		2.7.1	Reversibility	56		
		2.7.2	Spectral Gap	57		
		2.7.3	Sector Condition	57		
		2.7.4	Graded Sector Condition	59		
		2.7.5	Perturbations of Normal Operators	68		
	2.8	Invarian	nce Principles in the Multidimensional Case	70		
		2.8.1	·	70		
		2.8.2	Additive Functionals of Markov Processes	73		

xiii

xiv Contents

	2.9 Refer	Comments and References	76 78		
3	Rand	dom Walks in Random Environment	81		
_	3.1	Random Walks with Random Conductances			
	3.2	Doubly Stochastic Random Walks			
	3.3	Cyclic Random Walks			
	3.4	Random Walks with Drift in \mathcal{H}_{-1}			
		3.4.1 The Corrector Field			
		3.4.2 An Elliptic Equation for the Corrector Field			
		3.4.3 The Energy Identity			
	3.5	Random Walks in Mixing Environments			
	3.6	Doubly Stochastic Random Walks in Dimension $d = 1 \dots \dots$			
	3.7	Symmetric Random Walks			
	3.8	Comments and References			
		rences			
4		nds and Variational Principles for the Asymptotic Variance			
•	4.1	Quadratic Functional of the Resolvent			
	4.2	Bounds and Variational Formulas for the Variance			
	4.3	Variational Principles in the Graded Sector Context			
	4.4	Estimates of the Variance			
	4.5	Comments and References			
		rences			
Pa		Simple Exclusion Processes			
5		Simple Exclusion Process			
	5.1	Exclusion Processes			
	5.2	Central Limit Theorems for Additive Functionals			
	5.3	The Mean Zero Asymmetric Case			
	5.4	Duality			
	5.5	The Asymmetric Case, $\alpha = 1/2 \dots \dots \dots \dots$			
	5.6	The Asymmetric Case, $\alpha \neq 1/2$			
	5.7	Transient Markov Processes			
	5.8	Comments and References			
	Refe	rences	195		
6	Self-diffusion				
	6.1	66			
	6.2	Elementary Martingales			
	6.3	The Spaces \mathcal{H}_1 and \mathcal{H}_{-1}			
	6.4	Law of Large Numbers			
	6.5	Central Limit Theorem			
	6.6	The Mean Zero Asymmetric Case			
	6.7	Duality	216		
	6.8	The Asymmetric Case in Dimension $d \ge 3$	220		

Contents xv

	6.9	The Se	elf-diffusion M atrix	3			
	6.10	Comm	ents and References	6			
	Refer	ences		9			
7	Eanil	ihrium	Fluctuations of the Density Field	. 1			
′	7.1		y				
	7.2		ximations in $\mathcal{H}_{0,-1}$				
	7.3		uctuation–Dissipation Theorem				
	7.4		econd Class Particle				
	7.5		tes on the Operators $\mathfrak{L}_{\theta,s,2}$, $\mathfrak{L}_{\star,a}$ and $\mathfrak{J}_{\star,\pm}$				
	7.6		then the operators $\sim 0.3, 2.7, \sim \star$, a and $0.\star$, ~ 1.0 then the sand References ~ 1.0 then the operators ~ 2.7				
8	Regn	larity of	f the Asymptotic Variance	5			
Ū	8.1		esolvent Equation				
	8.2		ymmetric Case				
	8.3	•	ean Zero Case				
	8.4		symmetric Case in $d \ge 3$				
	8.5		arity of the Diffusion Coefficients				
	8.6		ents and References				
	10101	chees .					
Pa	rt III	Diffusio	ns in Random Environments				
9	Diffu	sions in	Random Environments	3			
	9.1	Diffusi	ions with Periodic Coefficients	3			
	9.2	Remar	k About the Quasi-periodic Case	9			
	9.3	Diffus	ions with Stationary Coefficients	1			
		9.3.1	Preliminaries on Stationary Environments	2			
		9.3.2	Spaces of Smooth Functions	14			
		9.3.3	Itô Equations with Stationary Coefficients	15			
	9.4	Enviro	onment Process and Its Properties	7			
	9.5	Martin	gale Decomposition and Central Limit Theorem 31	0			
	9.6	Homogenization of Solutions of Parabolic Partial Differential					
		Equati	ons	3			
		9.6.1	Random Coefficient Case	4			
		9.6.2	Periodic Case	6			
	9.7	Proofs	of Propositions 9.8 and 9.9	7			
		9.7.1	Proof of Proposition 9.8	8			
		9.7.2	Proof of Proposition 9.9	9			
	9.8	One-D	Dimensional Case	1			
	9.9	Diffus	ions with Time Dependent Coefficients	2			
		9.9.1	Space-Time Stationary Environments	2			
		9.9.2	Central Limit Theorem	:6			
	9.10	Comm	nents and References	:7			
	Refer	encec	30	Q			

xvi Contents

10	Varia	tional Principles for the Limiting Variance	331
	10.1	Spaces of Vector Fields	331
	10.2	Upper Bound	
	10.3	Lower Bound	339
	10.4	Spectral Representation of Homogeneous Fields	341
	10.5	Comments and References	343
	Refere	ences	343
11	Diffu:	sions with Divergence Free Drifts	345
	11.1	Passive Tracer Model	345
	11.2	Properties of the Flow and the Definition of the Stream Matrix	
	11.3	Central Limit Theorem for a Diffusion with Bounded Stream	
		Matrix	348
	11.4	Convection Enhanced Diffusions	
	11.5	Time Dependent Flows with Finite Péclet Number	
	11.6	Proof of Theorem 11.4	
		11.6.1 Notation	
		11.6.2 Statements of Some Technical Results	
		11.6.3 Properties of the Environment Process	
		11.6.4 Properties of the \mathcal{H}_1 -Norm	
		11.6.5 Construction of the Corrector Field	
		11.6.6 Proof of the Energy Identity	
	11.7	Proofs of the Technical Results	367
	11.,	11.7.1 Proof of Proposition 11.6	
		11.7.2 Proof of Proposition 11.7	
		11.7.3 Proof of Proposition 11.8	
		11.7.4 Proof of Proposition 11.9	
		11.7.5 Ergodic Theorem	
	11.8	Comments and References	
		rences	
12		sions with Gaussian Drifts	
	12.1	Stationary Gaussian Fields	
	12.2	Hermite Polynomials and Graded Structure of $L^2(\mathbb{Q})$	
	12.3	Environment Process and Its Properties	
	12.4	Central Limit Theorem	
	12.5	Proofs of Technical Results	
		12.5.1 Proòf of Estimate (12.2)	
		12.5.2 Proofs of Theorem 12.3 and Proposition 12.4	384
	12.6	Superdiffusive Transport in a Flow with Infinite Péclet	
		Number	
		12.6.1 Homogeneous, Isotropic Gaussian Flows	
		12.6.2 Flows with Infinite Péclet Numbers	. 389
	12.7	Central Limit Theorem for Diffusions in Gaussian and Markovian	
		Flows	
	12.8	Markovian Dynamics of the Environment	. 396

Contents xvii

		12.8.1 Hermite Polynomials	396
		12.8.2 Definition of the Transition Semigroup	397
		12.8.3 Properties of the Generator	
		12.8.4 More General Formulation of the Markov Property of the	
		Environment Process	399
	12.9	Periodic Approximation of the Flow	
	12.10	Environment Process	
	12.11	Proof of Part (1) of Theorem 12.13	405
		· ·	
		Proof of Part (2) of Theorem 12.13	
		Proofs of the Results from Sect. 12.8	
		12.14.1 Construction of the Semigroup	
		12.14.2 Proof of Proposition 12.16	
		12.14.3 Proof of Proposition 12.17	
	12.15	Proofs of the Results from Sect. 12.10	
	12.10	12.15.1 Proof of Proposition 12.19	
		12.15.2 Proof of Proposition 12.20	
	12 16	Appendix: Some Auxiliary Results About Gaussian Random	
	12.10	Fields	427
		12.16.1 Multiple Stochastic Integrals	
		12.16.2 Some Properties of Hermite Polynomials	
	12 17	Comments and References	
		ences	
13		tein-Uhlenbeck Process with a Random Potential	437
	13.1	Random Diffusion of a Particle with Inertia	
	13.2	Proof of the Central Limit Theorem	
	13.3	Proof of Proposition 13.2	
	13.4	Gaussian Bounds on Transition Probability Densities	
	13.5	Comments and References	
	Refere	ences	454
14	Analy	vtic Methods in Homogenization Theory	455
-	14.1	G-Convergence of Operators	
	14.2	Γ -Convergence of Quadratic Forms	
	14.3	G-Convergence of Matrix Valued Functions	
	14.4	Application to Homogenization of Diffusions in Random	
		Media	466
	14.5	Appendix: Ellipticity of the Coefficient Matrix of a Coercive Form	
	14.6	Comments and References	
		ences	
_			
Re	ference	es	475
No	tation		487
Su	bject I	ndex	489