Contents

Plenary Speakers

and Rock Masses	1
Revisiting the Paradigm of Critical State Soil Mechanics: Fabric Effects	13
Disturbed State Concept (DSC) for Constitutive Modeling of Geologic Materials and Beyond	27
Three-Dimensional Failure in Geomaterials: Experimentation and Modeling	47
FEM Implementation of Micropolar Hypoplastic Model J. Lin, W. Wu	59
Failure Mechanism and Control of Geotechnical Structures	63
Time-Dependent Stress-Strain Behavior of Geomaterials	
Back Analysis of Treporti Test Embankment with a Time Dependent Small Strain Stiffness Constitutive Model Thomas Benz, Valentina Berengo, Paolo Simonini, Martino Leoni	89
Rate Dependent Elastoviscoplastic Model	97

VI Contents

Some Strengths and Weaknesses of Overstress Based Elastic Viscoplastic Models	107
T.M. Bodas Freitas, D.M. Potts, L. Zdravkovic	
Comparison of Anisotropic Rate-Dependent Models at Element	115
Minna Karstunen, Mohammad Rezania, Nallathamby Sivasithamparam	113
A Comparison of Four Elastic Visco-Plastic Models for Soft Clay David Nash, Matthew Brown	121
A Rate-Dependent Viscous Model for Sand	125
A Review on Creep of Frozen Soils	129
Influence of Recycled Asphalt Pavement on Creep Compliance of Hot	105
Mix Asphalt	135
Simplified Modelling of Isotache Concept for Consolidation Yoichi Watabe, Serge Leroueil	139
Nonlinear Creep Behavior of Normally Consolidated Soft Clay Ze-Xiang Wu, Yin-Fu Jin, Zhen-Yu Yin	145
Review of Elastic Visco-Plastic Modeling of the Time-Dependent Stress-Strain Behavior of Soils and Its Extensions and Applications Jian-Hua Yin	149
Examination on Time-Dependent Soil Models in One-Dimensional Consolidation	159
Constitutive Modeling within Critical State Soil Mechanics	
Criterion for Flow Liquefaction Instability	167
Influence of Grain Breakage on Critical State	173
Compressible Fluid – An Alternative Concept within CSSM Tomislav Ivšić, Astrid Gojmerac Ivšić	179
Investigation of Critical States and Failure in True Triaxial Tests	
of Clays Victor N. Kaliakin, Andres Nieto Leal	185

Micromechanics of the Critical State of Granular Materials N.P. Kruyt	193
A Critical State Sand Model with Elastic-Plastic Coupling Ali Lashkari, Ali Golchin	199
Influence of Grain Size Distribution on Critical State of Granular Materials	207
On Simulation of Strain Localization Using Microplasicity Constitutive Models Majid T. Manzari, Karma Yonten	211
Simulation of Isotropic Cyclic Compression by an Elasto-viscoplasite Constitutive Model Based on the Nonlinear Kinematic Hardening Rules	215
Rotational Hardening and Uniqueness of Critical State Line in Clay Plasticity	223
A Modified Bounding Surface Hypoplasticity Model for Sands Gang Wang, Yongning Xie	231
Soils in Space	239
Unique Quantification of Critical State in Granular Media Considering Fabric Anisotropy	247
Peculiarities of Limiting States in Simulated Drained and Undrained Assemblies of Elliptical Particles Leo Rothenburg, Roberto Olivera-Bonilla	253
Multiscale and Multiphysics in Geomaterials	
Microstructural Modeling of Granular Materials with Inner Forces Pierre-Yves Hicher	259
Time Effects Relate to Particle Crushing in Granular Materials Poul V. Lade	265
A Power Law for Elastic Moduli of Unsaturated Soil Ning Lu	271

Application and Meaning of the t _{ij} Concept	277
A Simplified Model for Clayey Rocks Having a Plastic Porous Matrix Wanqing Shen, Jianfu Shao, Djimédo Kondo	283
Anisotropic Porochemoelectroelastic Solution for Inclined Wellbores with Applications to Operations in Unconventional Shale Plays Minh H. Tran, Younane N. Abousleiman	289
Modeling Ground-Shell Contact Forces in NATM Tunneling, Based on 3D Displacement Measurements Shafi Ullah, Bernhard Pichler, Christian Hellmich	293
Discrete Modeling of Fluid-Particle Interaction in Soils	297
Damage to Failure in Rock Structures	
Realistic Simulation of Progressive Brittle Rock Failure near Excavation Boundary	303
Excavation Damaged Zone Modelling in Claystone with Coupled Second Gradient Model	313
On the Modeling of Transition from a Diffuse to a Localized Damage Dashnor Hoxha, Amine Sbitti, Senjen Wu, Naima Belayachi, Duc-Phi Do	319
A Micromechanical Model for Time Dependent Behavior Related to Subcritical Damage in Quasi Brittle Rocks	323
Study on Equivalent Rheological Damage Model for Jointed Mass Yaoying Huang, Hong Zheng	327
On the Solubilities of Anhydrite and Gypsum	333
Binary Medium Model for Rock Sample	341
Study of Rock Bending Failure Mechanism Based on a Proposed Damage Model	349
To Which Extend the Failure Mode Originates from Microstructure? François Nicot, Neijb Hadda, Franck Bourrier, Luc Sibille, Félix Darve	359

ΙX

Excavation Damage Zone at High Depths: Field Cases and Coupled Analysis	363
Jean Vaunat, Antonio Gens, Benoit Garitte	
A Mohr-Coulomb Failure Criterion for Rocks Subjected to Dynamic Loading	367
An Elasto-plastic Model and Its Return Mapping Scheme for Anisotropic Rocks	371
Micro-Gas Hypothesis for Behaviors of Rocks under Loading Zhong Qi Yue (Quentin)	381
Micromechanical Poroplasiticty Damage Formulations for Saturated Microcracked Rocks	387
Behaviour of Geomaterials	
Achieving High Range Elastic Properties of Soil Mass for More Stable and Durable Geostructure	391
Effect of Air Entrapment on Unsaturated Flow in Porous Media Pan Chen, Changfu Wei, Jili Wang, Houzhen Wei, Tiantian Ma	399
On the Mechanical Behaviour of the Gibraltar Strait Breccias	409
Estimation of Tri-axial Behaviour of Pilani Soil Using the Results of Direct Shear Test as a Function of Pore Water Content	417
Discrete Element Investigation of the Asymptotic Behaviour of Granular Materials	423
Mechanical Behavior of Granular Particles with Different Angularities M.M. Mollanouri.Sh, Ali Aaghar Mirghasemi	431
Numerical Simulation of Direct Shear Test Using Elliptical Particles Morteza Naeij, Ali Aaghar Mirghasemi	441
Study of Anisotropies Evolution in Direct Shear Test Using Discrete Element Method	451

A Micromechanics-Based Modeling the Simple Shear Behaviors of Granular Materials	461
Evolution of Fabric in the Shearing Process Based on Micromechanics Homayoun Shaverdi, Mohd. Raihan Taha, Farzin Kalantary	469
Determination of Crystallinity of Alkali Activated Flyash by XRD and FTIR Studies D.N. Singh, Bhagwanjee Jha, Kadali Srinivas	477
Stress-Dependency of Intergranular Strain	483
On Shear-Volume Coupling in Deformation of Soils	491
Influence of Various Experimental Conditions on Shear Behavior of Compacted Sandy Soil under Unsaturated Condition	501
Investigation on Strain Localization of Coal Using Micro-finite Difference Modelling Yixin Zhao, Jingli Han, Yaodong Jiang, Zhongsheng Tian, You Yu	507
Constitutive Model	
An Elasto-Plastic Model for Liquefiable Sands Subjected to Torsional Shear Loadings	519
A Micromechanics Based Model for Cemented Granular Materials Arghya Das, Alessandro Tengattini, Giang Nguyen, Itai Einav	527
Modelling the Thermo-Plasticity of Unsaturated Soils	535
Modeling the Dilatancy of Overconsolidated Clay Zhiwei Gao, Jidong Zhao	541
Current Situation of Constitutive Model for Soils Based on Thermodynamics Approach	547
Constitutive Modeling of Cemented Sands Using Critical State Soil Mechanics and Generalized Plasticity Concepts	553

ΧI

Comparison between Feature of Modified Cam-Clay Model and UH Model	559
Wei Hou, Yangping Yao	
Experimental Investigation and Three Dimensional Constitutive Modeling of Principal Stress Rotation in Shanghai Soft Clay Maosong Huang, Yanhua Liu	567
From Internal Structure to Constitutive Modeling of Granular Assemblies	577
Extension of Mohr-Coulomb Model into State Dependent Softening of Sand and Its Application in Large Deformation Analysis	583
A Constitutive Model of Sand Considering the State-Dependent and the Effect of Direction of Principal Stress Peng Liu, Maotian Luan, Zhongtao Wang	593
An Elastoplastic Constitutive Model of Unsaturated Soils with Coupling of Capillary Hysteresis and Skeletal Deformation	599
Explicit Incorporation of Asymptotic States into Hypoplasticity D. Mašín	609
Simple and Unified Modelong of Time-Dependent Behavior for Various Geomaterials	617
Uniqueness of Numerical Experimental Results and Contribution to Constitutive Model by DEM	627
Study on Accelerated Creep Properties and Creep Damage Constitutive Relation for Volcanic Breccias	633
A Research on the Full State Function Constitutive Relation Model Zhenhai Wei, Mengshu Wang, Dingli Zhang	641
A Generalized Critical State Model for Gas Hydrate-Bearing Sediments Rong-tao Yan, Chang-fu Wei, Hou-zhen Wei, Hui-hui Tian, Er-ling Wu	649
A Review of Constitutive Modeling of Bonded Soil	657

A Unified Description of Toyoura Sand	663
A Structured UH Model	675
Application	
Incorporation of Soil Suction in Stress-Based Slope Stability Analysis Yong Chen, D. Chan, Yunzhi Tan	691
Static and Dynamic Analyses of High Core Rockfill Dams Weixin Dong, Yuzhen Yu	701
Implementation of Numerical Optimization Techniques in Constitutive Model Calibration	709
Modeling Damage by Crack Nucleation and Growth in Porous Media	715
Large Deformation Analysis of Spudcan Penetration into Sand Overlying Normally Consolidated Clay Pan Hu, Dong Wang, Mark Cassidy, Qing Yang	723
Application of Data Mining Techniques for the Development of New Rock Mechanics Constitutive Models	735
Ground Response Curve (GRC) and Excavation Damage Zone Based on an Isotropic Damage Model	741
Effect of Seismic Wave Form on the Behavior of River Embankment on the Soft Soil Deposit	751
Integration Algorithms Based on Drucker-Prager Criterion and Application in Slope Stability Analysis	757
Investigation of Behavioral Aspects of Flexible Pavement under Various Conditions by Finite Element Method	765
Three Dimensional Implementation of HISS Model in ABAQUS Mingqiang Wang, Jun Yang	771

XIII

Stability Analysis of Shuiwenzhan Landslide under Water Level Fluctuation and Rainfall in Three Gorges Reservoir Gang Zeng, Shimei Wang, Yong Chen	783
Case Study: A Stress Update Algorithm for D-P Constitutive Model Xiaohan Zhang	789
Plastic Damage of the Surrounding Rock under the Influence of Confined Water Pressure and Mining Disturbance	795
3D Large Deformation FE Analysis of Spudcan Foundations on Layered Clays Using CEL Approach	803
Author Index	811