Contents

1	Clus	ster An	alysis and K-means Clustering: An Introduction	I		
	1.1	The E	mergence of Data Mining	1		
	1.2	Cluste	r Analysis: A Brief Overview	2		
		1.2.1	Clustering Algorithms	3		
		1.2.2	Cluster Validity	5		
	1.3	K-mea	ans Clustering: An Ageless Algorithm	7		
		1.3.1	Theoretical Research on K-means	8		
		1.3.2	Data-Driven Research on K-means	9		
		1.3.3	Discussions	11		
	1.4	Conclu	uding Remarks	12		
	Refe	erences		12		
2	The	Unifor	m Effect of K-means Clustering	17		
	2.1	Introd	uction	17		
	2.2	The U	Iniform Effect of K-means Clustering	18		
		2.2.1	Case I: Two Clusters	18		
		2.2.2	Case II: Multiple Clusters	20		
	2.3					
		e Entropy Measure	23			
		2.3.1	The Entropy Measure	23		
		2.3.2	The Coefficient of Variation Measure	23		
		2.3.3	The Limitation of the Entropy Measure	24		
	2.4	Experi	imental Results	25		
		2.4.1	Experimental Setup	25		
		2.4.2	The Evidence of the Uniform Effect of K-means	27		
		2.4.3	The Quantitative Analysis of the Uniform Effect	28		
		2.4.4	The Evidence of the Biased Effect			
			of the Entropy Measure	30		
		2.4.5	The Hazard of the Biased Effect	31		

xiv Contents

	2.5 2.6		d Workuding Remarks					
3		eneralizing Distance Functions for Fuzzy c-Means Clustering						
	3.1		uction					
	3.2	Prelim	inaries and Problem Definition					
		3.2.1	Math Notations					
		3.2.2	Zangwill's Global Convergence Theorem					
		3.2.3	Fuzzy c-Means					
		3.2.4	Problem Definition					
	3.3	The Po	oint-to-Centroid Distance					
		3.3.1	Deriving the Point-to-Centroid Distance					
		3.3.2	Categorizing the Point-to-Centroid Distance					
		3.3.3	Properties of the Point-to-Centroid Distance					
	3.4	The G	dobal Convergence of GD-FCM					
	3.5	Exam	ples of the Point-to-Centroid Distance					
	3.6		imental Results					
		3.6.1	Experimental Setup					
		3.6.2	The Global Convergence of GD-FCM					
		3.6.3	The Merit of GD-FCM in Providing					
			Diversified Distances					
	3.7	Relate	d Work					
	3.8	Concl	uding Remarks					
	Refe							
4			n-Theoretic K-means for Text Clustering					
	4.1		uction					
	4.2		etical Overviews of Info-Kmeans					
		4.2.1	The Objective of Info-Kmeans					
		4.2.2	A Probabilistic View of Info-Kmeans					
		4.2.3	An Information-Theoretic View of Info-Kmeans					
		4.2.4	Discussions					
	4.3		Dilemma of Info-Kmeans					
	4.4		AIL Algorithm					
		4.4.1	SAIL: Theoretical Foundation					
		4.4.2	SAIL: Computational Issues					
		4.4.3	SAIL: Algorithmic Details					
	4.5		nd SAIL: Enhancing SAIL via VNS					
		and Pa	arallel Computing					
		4.5.1	The V-SAIL Algorithm					
		452	The PV-SAIL Algorithm					

Contents xv

	4.6	Experimental Results	85 85				
		4.6.2 The Impact of Zero-Value Dilemma	88				
		4.6.3 The Comparison of SAIL and the Smoothing	00				
		Technique	89				
		4.6.4 The Comparison of SAIL and Spherical K-means	91				
		4.6.5 Inside SAIL	91				
		4.6.6 The Performance of V-SAIL and PV-SAIL	94				
	4.7	Related Work	96				
	4.8 Concluding Remarks						
	_	4.8 Concluding Remarks					
	rtore						
5		ting External Validation Measures	00				
		-means Clustering	99				
	5.1	Introduction	99				
	5.2	External Validation Measures	100				
	5.3	Defective Validation Measures	101				
		5.3.1 The Simulation Setup	103				
		5.3.2 The Cluster Validation Results	104				
		5.3.3 Exploring the Defective Measures	104				
		5.3.4 Improving the Defective Measures	105				
	5.4	Measure Normalization	106				
		5.4.1 Normalizing the Measures	106				
		5.4.2 The Effectiveness of DCV for Uniform					
		Effect Detection	112				
		5.4.3 The Effect of Normalization	114				
	5.5	Measure Properties	116				
		5.5.1 The Consistency Between Measures	116				
		5.5.2 Properties of Measures	118				
		5.5.3 Discussions	121				
	5.6	Concluding Remarks	122				
	Refe	ferences					
_	••		10.				
6		eans Based Local Decomposition for Rare Class Analysis	125				
	6.1	Introduction	125				
	6.2	Preliminaries and Problem Definition	127				
		6.2.1 Rare Class Analysis	127				
		6.2.2 Problem Definition	128				
	6.3	Local Clustering	129				
		6.3.1 The Local Clustering Scheme	129				
		6.3.2 Properties of Local Clustering for Classification	129				
	6.4	COG for Rare Class Analysis	130				
		6.4.1 COG and COG-OS	130				
		6.4.2 An Illustration of COG	132				
		6.4.3 Computational Complexity Issues	133				

xvi Contents

	6.5	-	mental Results	135		
		6.5.1	Experimental Setup	135		
		6.5.2	COG and COG-OS on Imbalanced Data Sets	137		
		6.5.3	COG-OS Versus Re-Sampling Schemes	141		
		6.5.4	COG-OS for Network Intrusion Detection	141		
		6.5.5	COG for Credit Card Fraud Detection	145		
		6.5.6	COG on Balanced Data Sets	146		
		6.5.7	Limitations of COG	150		
	6.6		d Work	151		
	6.7		uding Remarks	152		
	Refe	rences.		152		
7	K-m	eans Ba	ased Consensus Clustering	155		
	7.1		uction	155		
	7.2	Proble	m Definition	156		
		7.2.1	Consensus Clustering	156		
		7.2.2	K-means Based Consensus Clustering	157		
		7.2.3	Problem Definition	158		
	7.3	Utility	Functions for K-means Based Consensus Clustering	158		
		7.3.1	The Distance Functions for K-means	159		
		7.3.2	A Sufficient Condition for KCC Utility Functions	159		
		7.3.3	The Non-Unique Correspondence and the			
			Forms of KCC Utility Functions	162		
		7.3.4	Discussions	163		
	7.4	Handli	ing Inconsistent Data	165		
			imental Results	167		
		7.5.1	Experimental Setup	167		
		7.5.2	The Convergence of KCC	168		
		7.5.3	The Cluster Validity of KCC	169		
		7.5.4	The Comparison of the Generation Strategies			
			of Basic Clusterings	171		
		7.5.5	The Effectiveness of KCC in Handling			
			Inconsistent Data	173		
	7.6	Relate	ed Work	173		
	7.7	Concluding Remarks				
	Refe	References				
C	loccer	•%7		177		
U	102241	J		1,,		