

Contents

Preface *XIII*

A Personal Foreword *XV*

1	Origin and Historical Perspective on Reactive Metabolites	1
	Abbreviations	1
1.1	Mutagenesis and Carcinogenesis	1
1.2	Detection of Reactive Metabolites	3
1.3	Induction and Inhibition: Early Probes for Reactive Metabolites and Hepatotoxicants	4
1.4	Covalent Binding and Oxidative Stress: Possible Mechanisms of Reactive Metabolite Cytotoxicity	5
1.5	Activation and Deactivation: Intoxication and Detoxification	6
1.6	Genetic Influences on Reactive Metabolite Formation	6
1.7	Halothane: the Role of Reactive Metabolites in Immune-Mediated Toxicity	7
1.8	Formation of Reactive Metabolites, Amount Formed, and Removal of Liability	8
1.9	Antibodies: Possible Clues but Inconclusive	8
1.10	Parent Drug and Not Reactive Metabolites, Complications in Immune-Mediated Toxicity	9
1.11	Reversible Pharmacology Should not be Ignored as a Primary Cause of Side Effects	10
1.12	Conclusions: Key Points in the Introduction	10
	References	11
2	Role of Reactive Metabolites in Genotoxicity	13
	Abbreviations	13
2.1	Introduction	13
2.2	Carcinogenicity of Aromatic and Heteroaromatic Amines	13
2.3	Carcinogenicity of Nitrosamines	17
2.4	Carcinogenicity of Quinones and Related Compounds	19
2.5	Carcinogenicity of Furan	23
2.6	Carcinogenicity of Vinyl Halides	26

2.7	Carcinogenicity of Ethyl Carbamate	26
2.8	Carcinogenicity of Dihaloalkanes	28
2.9	Assays to Detect Metabolism-Dependent Genotoxicity in Drug Discovery	28
2.10	Case Studies in Eliminating Metabolism-Based Mutagenicity in Drug Discovery Programs	29
	References	36
3	Bioactivation and Inactivation of Cytochrome P450 and Other Drug-Metabolizing Enzymes	43
	Abbreviations	43
3.1	Introduction	43
3.2	Pharmacokinetic and Enzyme Kinetic Principles Underlying Mechanism-Based Inactivation and Drug–Drug Interactions	44
3.2.1	Enzyme Kinetic Principles of Mechanism-Based Inactivation	44
3.2.2	Pharmacokinetic Principles Underlying DDIs Caused by Mechanism-Based Inactivation	46
3.3	Mechanisms of Inactivation of Cytochrome P450 Enzymes	47
3.3.1	Quasi-Irreversible Inactivation	47
3.3.2	Heme Adducts	48
3.3.3	Protein Adducts	49
3.4	Examples of Drugs and Other Compounds that are Mechanism-Based Inactivators of Cytochrome P450 Enzymes	49
3.4.1	Amines	49
3.4.2	Methylenedioxypyphenyl Compounds	51
3.4.3	Quinones, Quinone Imines, and Quinone Methides	52
3.4.4	Thiophenes	53
3.4.5	Furans	55
3.4.6	Alkynes	56
3.4.7	2-Alkylimidazoles	57
3.4.8	Other Noteworthy Cytochrome P450 Inactivators	58
3.5	Mechanism-Based Inactivation of Other Drug-Metabolizing Enzymes	60
3.5.1	Aldehyde Oxidase	60
3.5.2	Monoamine Oxidases	61
3.6	Concluding Remarks	64
	References	65
4	Role of Reactive Metabolites in Drug-Induced Toxicity – The Tale of Acetaminophen, Halothane, Hydralazine, and Tienilic Acid	71
	Abbreviations	71
4.1	Introduction	71
4.2	Acetaminophen	71
4.2.1	Metabolism of Acetaminophen	72
4.2.2	Metabolic Activation of Acetaminophen	73

4.3	Halothane 75
4.3.1	Metabolism of Halothane 76
4.3.2	Hepatotoxicity following Halothane Administration 78
4.4	Hydralazine 79
4.5	Tienilic Acid 82
	References 84
5	Pathways of Reactive Metabolite Formation with Toxicophores/-Structural Alerts 93
	Abbreviations 93
5.1	Introduction 93
5.2	Intrinsically Reactive Toxicophores 93
5.2.1	Electrophilic Functional Groups 94
5.2.2	Metal Complexing Functional Groups 96
5.3	Toxicophores that Require Bioactivation to Reactive Metabolites 98
5.3.1	Aromatic Amines (Anilines) 98
5.3.2	<i>ortho</i> - and <i>para</i> -Aminophenols 101
5.3.3	Nitroarenes 103
5.3.4	Hydrazines 105
5.3.5	Five-Membered Heteroaromatic Rings 107
5.3.5.1	Furans 107
5.3.5.2	Thiophenes 109
5.3.5.3	Thiazoles and 2-Aminothiazoles 109
5.3.5.4	3-Alkyl Pyrrole and 3-Alkylindole Derivatives 112
5.3.5.5	1,3-Benzodioxole (Methylenedioxophenyl) Motif 115
5.3.6	Terminal Alkenes and Alkynes 117
5.4	Concluding Remarks 121
	References 121
6	Intrinsically Electrophilic Compounds as a Liability in Drug Discovery 131
	Abbreviations 131
6.1	Introduction 131
6.2	Intrinsic Electrophilicity of β -Lactam Antibiotics as a Causative Factor in Toxicity 131
6.3	Intrinsically Electrophilic Compounds in Drug Discovery 133
6.3.1	Linking Innate Electrophilicity with Drug Toxicity 135
6.4	Serendipitous Identification of Intrinsically Electrophilic Compounds in Drug Discovery 136
	References 141
7	Role of Reactive Metabolites in Pharmacological Action 145
	Abbreviations 145
7.1	Introduction 145

7.2	Drugs Activated Nonenzymatically and by Oxidative Metabolism	145
7.2.1	Proton Pump Inhibitors	145
7.2.2	Nitrosoureas	147
7.2.3	Imidazotriazenes	148
7.2.4	Thienotetrahydropyridines	150
7.2.5	Oxazaphosphorines	152
7.2.6	<i>N,N,N',N',N'-</i> Hexamethylmelamine	153
7.3	Bioreductive Activation of Drugs	153
7.3.1	Bioreduction to Radical Intermediates	157
7.3.1.1	Tirapazamine	157
7.3.1.2	Anthracyclines	157
7.3.1.3	Enediynes	158
7.3.1.4	Artemisinin Derivatives	166
7.3.2	Bioreductive Activation to Electrophilic Intermediates	168
7.3.2.1	Mitomycins	168
7.3.2.2	Aziridinylbenzoquinones	170
7.3.2.3	Bioreductive Activation of Anthracyclines to Alkylating Species	173
7.3.2.4	Bioreductive Activation of Nitroaromatic Compounds	174
7.4	Concluding Remarks	175
	References	176
8	Retrospective Analysis of Structure–Toxicity Relationships of Drugs	185
	Abbreviations	185
8.1	Introduction	185
8.2	Irreversible Secondary Pharmacology	189
8.2.1	Common Structural Features: Carboxylic Acids	189
8.3	Primary Pharmacology and Irreversible Secondary Pharmacology	191
8.4	Primary or Secondary Pharmacology and Reactive Metabolites: the Possibility for False Structure–Toxicity Relationships	192
8.5	Multifactorial Mechanisms as Causes of Toxicity	196
8.6	Clear Correlation between Protein Target and Reactive Metabolites	197
8.7	Conclusion – Validation of Reactive Metabolites as Causes of Toxicity	198
	References	200
9	Bioactivation and Natural Products	203
	Abbreviations	203
9.1	Introduction	203
9.2	Well-Known Examples of Bioactivation of Compounds Present in Herbal Remedies	205
9.2.1	Germander and Teucrin A	205
9.2.2	Pennyroyal Oil and Menthofuran	207

9.2.3	<i>Aristolochia</i> and Aristolochic Acid	208
9.2.4	Comfrey, Coltsfoot, and Pyrrolizidine Alkaloids	210
9.3	Well-Known Examples of Bioactivation of Compounds Present in Foods	212
9.3.1	Cycasin	212
9.3.2	Aflatoxin	214
9.3.3	3-Methylindole	216
9.3.4	Polycyclic Azaheterocyclic Compounds in Cooked Meats	216
9.3.5	Nitrosamines	219
9.4	Summary	220
	References	220
10	Experimental Approaches to Reactive Metabolite Detection	225
	Abbreviations	225
10.1	Introduction	225
10.2	Identification of Structural Alerts and Avoiding them in Drug Design	225
10.3	Assays for the Detection of Reactive Metabolites	227
10.3.1	Qualitative Electrophile Trapping Assays	227
10.3.2	Quantitative Electrophile Trapping Assays	230
10.3.3	Covalent Binding Assays	231
10.3.4	Detecting and Characterizing Bioactivation by Enzymes Other than Cytochrome P450	233
10.4	Other Studies that can Show the Existence of Reactive Metabolites	234
10.4.1	Metabolite Identification Studies	234
10.4.2	Radiolabeled Metabolism and Excretion <i>In Vivo</i>	235
10.4.3	Whole-Body Autoradiography and Tissue Binding	236
10.4.4	Inactivation of Cytochrome P450 Enzymes	237
10.5	Conclusion	237
	References	238
11	Case Studies on Eliminating/Reducing Reactive Metabolite Formation in Drug Discovery	241
	Abbreviations	241
11.1	Medicinal Chemistry Tactics to Eliminate Reactive Metabolite Formation	241
11.2	Eliminating Reactive Metabolite Formation on Heterocyclic Ring Systems	242
11.2.1	Mechanism(s) of Thiazole Ring Bioactivation and Rational Chemistry Approaches to Abolish Reactive Metabolite Formation	242
11.2.2	Mechanism(s) of Isothiazole Ring Bioactivation and Rational Chemistry Approaches to Abolish Reactive Metabolite Formation	249
11.3	Medicinal Chemistry Strategies to Mitigate Bioactivation of Electron-Rich Aromatic Rings	251

11.4	Medicinal Chemistry Strategies to Mitigate Bioactivation on a Piperazine Ring System	256
11.5	4-Fluorofelbamate as a Potentially Safer Alternative to Felbamate	258
11.6	Concluding Remarks	263
	References	263
12	Structural Alert and Reactive Metabolite Analysis for the Top 200 Drugs in the US Market by Prescription	269
12.1	Abbreviations	269
12.1	Introduction	269
12.2	Structural Alert and Reactive Metabolite Analyses for the Top 20 Most Prescribed Drugs in the United States for the Year 2009	270
12.2.1	Daily Dose Trends	270
12.2.2	Presence of Structural Alerts	270
12.2.3	Evidence for Metabolic Activation to Reactive Metabolites	275
12.3	Insights Into the Excellent Safety Records for Reactive Metabolite–Positive Blockbuster Drugs	280
12.4	Structural Alert and Reactive Metabolite Analyses for the Remaining 180 Most Prescribed Drugs	282
12.4.1	Structural Alert and/or Reactive Metabolite “False Positives”	289
12.5	Structure Toxicity Trends	302
12.5.1	Meloxicam versus Sudoxicam	304
12.5.2	Zolpidem versus Alpidem	304
12.5.3	Quetiapine versus Olanzapine versus Clozapine	304
	References	306
13	Mitigating Toxicity Risks with Affinity Labeling Drug Candidates	313
13.1	Abbreviations	313
13.1	Introduction	313
13.2	Designing Covalent Inhibitors	313
13.2.1	Selection of Warheads	316
13.2.2	Reversible Covalent Modification	322
13.3	Optimization of Chemical Reactivity of the Warhead Moiety	326
13.3.1	Experimental Approaches	326
13.3.2	<i>In Silico</i> Approaches	328
13.3.3	Additional Derisking Factors	329
13.4	Concluding Remarks	329
	References	330
14	Dealing with Reactive Metabolite–Positive Compounds in Drug Discovery	335
14.1	Abbreviations	335
14.1	Introduction	335
14.2	Avoiding the Use of Structural Alerts in Drug Design	336
14.3	Structural Alert and Reactive Metabolite Formation	338

14.4	Should Reactive Metabolite–Positive Compounds be Nominated as Drug Candidates? 340
14.4.1	Impact of Competing, Detoxification Pathways 341
14.4.2	The Impact of Dose Size 342
14.4.3	Consideration of the Medical Need/Urgency 345
14.4.4	Consideration of the Duration of Treatment 345
14.4.5	Consideration of Novel Pharmacological Targets 346
14.5	The Multifactorial Nature of IADRs 348
14.6	Concluding Remarks 350
	References 351
15	Managing IADRs – a Risk–Benefit Analysis 357
	Abbreviations 357
15.1	Risk–Benefit Analysis 357
15.2	How Common is Clinical Drug Toxicity? 359
15.3	Rules and Laws of Drug Toxicity 363
15.4	Difficulties in Defining Cause and Black Box Warnings 365
15.5	Labeling Changes, Contraindications, and Warnings: the Effectiveness of Side Effect Monitoring 367
15.6	Allele Association with Hypersensitivity Induced by Abacavir: Toward a Biomarker for Toxicity 369
15.7	More Questions than Answers: Benefit Risk for ADRs 373
	References 374
	Index 377