3

Contents

	riciace Al
1	Background of Uranium Chemistry 1
1.1	Introduction of Uranium in Nuclear Industry 1
1.1.1	Importance of Uranium Resource in Nuclear Industry 1
1.1.2	Uranium Cycle in Nuclear Industry 2
1.2	Coordination and Species of Uranium 2
1.2.1	General Chemical Properties of Uranium 2
1.2.2	Basic Uranium Species in the Solution-Uranyl and Uranyl Compound
1.2.3	Valence Transformation of Uranium 4
	References 5
2	Introduction of Uranium Reduction Extraction 9
2.1	Introduction of Uranium Extraction 9
2.2	Introduction of Uranium Reduction Extraction 9
2.2.1	Basic Concept and Process of Uranium Reduction Extraction 9
2.2.2	Uranium Reduction by Zerovalent Iron 10
2.2.3	Photochemistry and Photochemical Uranium Reduction 10
2.2.4	Electrochemistry Involved in the Electrochemical Uranium
	Reduction 11
2.3	Key Factors to Influence the Uranium Reduction Extraction 11
2.3.1	Surface Adsorption and Coordination 12
2.3.2	Reductive Ability 12
2.4	Practical Situation that Requires Uranium Extraction 13
2.4.1	Uranium Extraction in Seawater 13
2.4.2	Uranium Extraction in Mining and Metallurgy 13
2.4.3	Uranium Extraction in Nuclear Wastewater 14
	References 14
3	Uranium Reduction Extraction by Modified Nano Zerovalent
	Iron 19
3.1	Introduction of Nano Zerovalent Iron 19
3.2	Material Design for Promoted Stability and Reductive Ability 21

vi	Contents	
	3.3	Uranium Extraction Performance 24
	3.4	Reaction Mechanism 26
	3.5	Conclusion and Future Perspectives 29
		References 30
	4	Uranium Reduction Extraction by Commercial Iron
		Powder 33
	4.1	Introduction of Alternative Abundant Reductant-Commercial Iron
	4.0	Powder 33
	4.2	Ultrasound Enhancement of Uranium Extraction by Commercial Iron
	404	Powder 34
	4.2.1	Extraction of U(VI) by Commercial Iron Powder 34
	4.2.2	Analysis of Uranium Enrichment Status 36
	4.2.3	Key Mechanism of Ultrasonic Enhanced Commercial Iron Powder for Uranium Extraction 36
	4.3	Microbial Sulfurization-Enhanced Commercial Iron Powder Extraction
	4.3	of Uranium 39
	4.3.1	Characterizations of BS-ZVI 39
	4.3.2	Performance of Photocatalytic Enrichment of U(VI) by BS-ZVI 40
	4.3.3	Photoelectric Properties and Energy Band Structure of BS-ZVI 41
	4.3.4	Photocatalytic Enrichment Mechanism of U(VI) 43
	4.4	Conclusion and Perspectives 45
	•••	References 45
	5	Photocatalytic Uranium Reduction Extraction
	J	by Carbon-Semiconductor Hybrid Material 49
	5.1	Introduction of Photocatalytic Uranium Reduction Extraction 49
	5.2	Motivated Material Design of Carbon-Semiconductor Hybrid
	J,2	Material 51
	5.2.1	Introduction 51
	5.2.2	Results and Discussions 52
	5.2.3	Summary 57
	5.3	Band Engineering of Carbon-Semiconductor Hybrid Material 57
	5.3.1	Introduction 57
	5.3.2	Results and Discussions 58
	5.3.3	Summary 64
	5.4	Assembly of Carbon-Semiconductor Hybrid Material for Facile Recycle
	<i>5.</i> .	Use 65
	5.4.1	Introduction 65
	5.4.2	Results and Discussions 66
	5.4.3	Summary 71
	5.5	Conclusion and Perspectives 72
		References 73

6	Photocatalytic Uranium Reduction Extraction by Surface Reconstructed Semiconductor 77
6.1	Introduction 77
6.2	Design of Hydrogen-Incorporated Semiconductor-Hydrogen-Assist 78
6.2.1	Hydrogen-Incorporated VO ₂ 78
6.2.2	Hydrogen-Incorporated Oxidized WS ₂ 86
6.3	Hydrogen-Incorporated Vacancy Engineering 92
6.3.1	Oxygen Vacancy-Case of WO _{3-x} 92
6.3.2	Doping-Induced Cation Vacancy-Case of Fe-Doped TiO ₂ 99
6.3.3	Oxygen Vacancy Engineering in Black TiO ₂ @Co ₂ P S-Scheme 104
6.4	Conclusions 110
	References 111
7	Enhanced Photocatalytic Uranium Reduction Extraction
	by Electron Enhancement 117
7.1	Introduction 117
7.2	Plasmonic Enhancement of Uranium Extraction 117
7.2.1	Enhanced Uranium by Hot Electrons of Plasmonic Metals 118
7.2.1.1	Introduction 118
7.2.1.2	Summary 125
7.2.2	Plasmonic Engineering – High-Entropy Plasmonic Alloy 125
7.2.2.1	Introduction 125
7.2.2.2	Summary 133
7.2.3	Promotion of Electron Energy by Upconversion-Case of Er Doping 133
7.2.3.1	Introduction 133
7.2.3.2	Summary 141
7.3	Enhanced by Cocatalysis 143
7.3.1	Introduction 143
7.3.1.1	Results and Discussions 145
7.3.2	Summary 156
7.4	Conclusion and Perspectives 157
	References 157
8	Photocatalytic Uranium Reduction Extraction in Tributyl Phosphate-Kerosene System 169
8.1	Introduction of Tributyl Phosphate-Kerosene System-Spent Fuel
	Reprocessing 169
8.2	Material Design-Self Oxidation of Red Phosphorus 170
8.3	Uranium Extraction in Tributyl Phosphate-Kerosene System 173
8.4	Reaction Mechanism-Self Oxidation Cycle 177
8.5	Conclusion and Perspectives 181
	References 182

viii Contents	
-----------------	--

9	Photocatalytic Uranium Reduction Extraction
	in Fluoride-Containing System 187
9.1	Introduction of Photocatalytic Uranium Reduction Extraction 187
9.2	Simultaneously Constructing U(VI) Constraint Sites and Water
	Oxidation Sites to Promote the Purification of Fluorine-Containing
	Uranium Wastewater 188
9.2.1	Introduction 188
9.2.2	Results and Discussions 189
9.2.3	Summary 197
9.3	Advanced Photocatalytic Heterojunction with Plasmon Resonance Effect
	for Uranium Extraction from Fluoride-Containing Uranium
	Wastewater 198
9.3.1	Introduction 198
9.3.2	Results and Discussions 199
9.3.3	Summary 204
	References 205
10	Electrochemical Uranium Reduction Extraction: Design
	of Electrode Materials 211
10.1	Introduction of Electrocatalytic Uranium Reduction Extraction 211
10.2	Edge-Site Confinement for Enhanced Electrocatalytic Uranium
	Reduction Extraction 213
10.2.1	Introduction 213
10.2.2	Results and Discussions 214
10.2.3	
10.3	Facet-Dependent Electrochemical Uranium Extraction in Seawater Over
	Fe ₃ O ₄ Catalysts 219
10.3.1	Introduction 219
10.3.2	Results and Discussions 220
10.3.3	Conclusion 225
10.4	Heterogeneous Interface-Enhanced Electrocatalytic Uranium Reduction
	Extraction 225
10.4.1	Introduction 225
10.4.2	Results and Discussions 226
10.4.3	Summary 231
10.5	Surface Hydroxyl-Enhanced Electrochemical Extraction of
	Uranium 232
10.5.1	Introduction 232
10.5.2	Results and Discussions 233
10.5.3	Summary 237
10.6	Charge-Separation Engineering for Electrocatalytic Uranium Reduction
	Extraction 238
10.6.1	Introduction 238
10.6.2	Results and Discussions 239
10.6.3	Summary 244

10.7	Conclusion and Perspectives 244	
	References 245	
11	Electrochemical Uranium Extraction from	
	Seawater-Reproduced Vacancy 253	
11.1	Introduction of Electrocatalytic Uranium Extraction from Seawater 2	253
11.2	High-Selective Site Oxygen Vacancy 253	
11.3	Conclusion 257	
	References 258	
12	Electrochemical Uranium Extraction from Nuclear Wastewater	
	of Fuel Production 263	
12.1	Introduction of Nuclear Wastewater of Fuel Production: Ultrahigh	
	Concentration of Fluoride 263	
12.2	Material Design-Ion Pair Sites 264	
12.3	Uranium Extraction Performance 266	
12.3.1	Simulated Wastewater 266	
12.3.2	Real Nuclear Wastewater 268	
12.4	Reaction Mechanism - Coordination and Crystallization 268	
12.5	Conclusion 270	
	References 270	
13	Perspectives and Emerging Directions 273	
13.1	Application in Real Situation 273	
13.2	Criteria of Performance Evaluation 274	
13.3	Device of Uranium Reduction Extraction 276	
13.3.1	Chemical Reduction Coupled with External Field 276	
13.3.2	Photocatalytic Device for Flow Cell 276	
13.3.3	Electrocatalytic Device with Controlling System 277	
	References 279	

Index 283